Skip to main content
Log in

Buckling of flexoelectric semiconductor beams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We study the buckling of flexoelectric semiconductor beams using one-dimensional equations based on the macroscopic theory of flexoelectric semiconductors. Simple solutions for a beam with sliding ends and a simply supported beam with hinged ends are obtained. Results show that when buckling occurs, the mobile charges in the beams redistribute themselves driven by the electric polarization or field accompanying buckling through flexoelectricity. The buckling load increases due to flexoelectric coupling which may be called flexoelectric stiffening. The mobile charges redistribute themselves to screen the polarization or electric field and thus weaken the flexoelectric stiffening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  2. Meitzler, A.H., Tiersten, H.F., Warner, A.W., Berlincourt, D., Couqin, G.A., Welsh, F.S.: IEEE Standard on Piezoelectricity. IEEE, New York (1988)

    Google Scholar 

  3. Tagantsev, A.K.: Theory of flexoelectric effect in crystals. Sov. Phys. JETP 61, 1246–1254 (1985)

    Google Scholar 

  4. Tagantsev, A.K., Meunier, V., Sharma, P.: Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling. MRS Bull. 34, 643–647 (2009)

    Article  Google Scholar 

  5. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)

    Article  Google Scholar 

  6. Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, L., Shen, S.: Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int. J. Appl. Mech. 05, 1350015 (2013)

    Article  Google Scholar 

  8. Wang, Z.L., Wu, W.Z.: Piezotronics and piezo-phototronics-fundamentals and applications. Natl. Sci. Rev. 1, 62–90 (2014)

    Article  Google Scholar 

  9. Liu, Y., Zhang, Y., Yang, Q., Niu, S.M., Wang, Z.L.: Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 14, 257–275 (2015)

    Article  Google Scholar 

  10. Wang, Z.L., Wu, W.Z., Falconi, C.: Piezotronics and piezo-phototronics with third-generation semiconductors. MRS Bull. 43, 922–927 (2018)

    Article  Google Scholar 

  11. Zhang, Y., Leng, Y., Willatzen, M., Huang, B.: Theory of piezotronics and piezo-phototronics. MRS Bull. 43, 928–935 (2018)

    Article  Google Scholar 

  12. Wang, Z.L.: Piezotronics and Piezo-Phototronics. Springer, Berlin (2012)

    Book  Google Scholar 

  13. Wauer, J., Suherman, S.: Thickness vibrations of a piezo-semiconducting plate layer. Int. J. Eng. Sci. 35, 1387–1404 (1997)

    Article  MATH  Google Scholar 

  14. Jiao, F.Y., Wei, P.J., Zhou, Y.H., Zhou, X.L.: Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. Eur. J. Mech. A Solids 75, 70–81 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiao, F.Y., Wei, P.J., Zhou, Y.H., Zhou, X.L.: The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics 92, 68–78 (2019)

    Article  Google Scholar 

  16. Sladek, J., Sladek, V., Pan, E., Wuensche, M.: Fracture analysis in piezoelectric semiconductors under a thermal load. Eng. Fract. Mech. 126, 27–39 (2014)

    Article  Google Scholar 

  17. Tian, R., Liu, J.X., Pan, E., Wang, Y.S., Soh, A.K.: Some characteristics of elastic waves in a piezoelectric semiconductor plate. J. Appl. Phys. 126, 125701 (2019)

    Article  Google Scholar 

  18. Zhao, M.H., Pan, Y.B., Fan, C.Y., Xu, G.T.: Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. Int. J. Solids Struct. 94–95, 50–59 (2016)

    Article  Google Scholar 

  19. Qin, G.S., Lu, C.S., Zhang, X., Zhao, M.H.: Electric current dependent fracture in GaN piezoelectric semiconductor ceramics. Materials 11, 2000 (2018)

    Article  Google Scholar 

  20. Afraneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)

    Article  Google Scholar 

  21. Fan, S.Q., Liang, Y.X., Xie, J.M., Hu, Y.T.: Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: Part I-Linearized analysis. Nano Energy 40, 82–87 (2017)

    Article  Google Scholar 

  22. Liang, Y.X., Fan, S.Q., Chen, X.D., Hu, Y.T.: Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction. Nanotechnology 9, 1917–1925 (2018)

    Google Scholar 

  23. Sharma, J.N., Sharma, K.K., Kumar, A.: Acousto-diffusive waves in a piezoelectric-semiconductor-piezoelectric sandwich structure. World J. Mech. 1, 247–255 (2011)

    Article  Google Scholar 

  24. Zhang, C.L., Luo, Y.X., Cheng, R.R., Wang, X.Y.: Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Adv. 2, 3421–3426 (2017)

    Article  Google Scholar 

  25. Yang, J.S.: Analaysis of Piezoelectric Semiconductor Structures. Springer, Switzerland (2020)

    Book  Google Scholar 

  26. Narvaez, J., Vasquez-Sancho, F., Catalan, G.: Enhanced flexoelectric-like response in oxide semiconductors. Nature 538, 219–221 (2016)

    Article  Google Scholar 

  27. Nguyen, B.H., Zhuang, X., Rabczuk, T.: NURBS-based formulation for nonlinear electro-gradient elasticity in semiconductors. Comput. Method. Appl. Mech. 346, 1074–1095 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, M.M., Kim, D.J., Alexe, M.: Flexo-photovoltaic effect. Science 360, 904–907 (2020)

    Article  Google Scholar 

  29. Zou, H., Zhang, C., Xue, H., Wu, Z., Wang, Z.L.: Boosting the solar cell efficiency by flexophotovoltaic effect? ACS Nano 13, 12259–12267 (2019)

    Article  Google Scholar 

  30. Zhao, M.H., Liu, X., Fan, C.Y., Lu, C.S., Wang, B.B.: Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: Effects of flexoelectricity and strain gradient. J. Appl. Phys. 127, 085707 (2020)

    Article  Google Scholar 

  31. Qu, Y.L., Jin, F., Yang, J.S.: Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. J. Appl. Phys. 127, 194502 (2020)

    Article  Google Scholar 

  32. Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26, 1231–1245 (1988)

    Article  Google Scholar 

  33. Tagantsev, A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 32, 5883–5889 (1986)

    Article  Google Scholar 

  34. Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)

    Article  Google Scholar 

  35. Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    Article  Google Scholar 

  36. Maranganti, R., Sharma, P.: Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys. Rev. B 80, 054109 (2009)

    Article  Google Scholar 

  37. Zhang, R., Liang, X.: Shen, S: A Timoshenko dielectric beam model with flexoelectric effect. Meccanica 51, 1181–1188 (2015)

    Article  MATH  Google Scholar 

  38. Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51, 3218–3225 (2014)

    Article  Google Scholar 

  39. Zhou, Z.D., Yang, C.P., Su, Y.X., Huang, R., Lin, X.L.: Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect. Smart Mater. Struct. 26, 095025 (2017)

    Article  Google Scholar 

  40. Hu, Y., Wang, J., Yang, F., Xue, H., Hu, H., Wang, J.: The effect of first-order strain gradient in micro piezoelectric-bimorph power harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 849–852 (2011)

    Article  Google Scholar 

  41. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Z.R., Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J. Appl. Phys. 116, 014307 (2014)

    Article  Google Scholar 

  43. Zhang, Z.R., Jiang, L.Y.: Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J. Appl. Phys. 116, 134308 (2014)

    Article  Google Scholar 

  44. Ghobadi, A., Beni, Y.T., Golestanian, H.: Size dependent nonlinear bending analysis of a flexoelectric functionally graded nano-plate under thermo-electro-mechanical loads. J. Solid Mech. 12, 33–56 (2020)

    MATH  Google Scholar 

  45. Ji, X., Li, A.Q.: The size-dependent electromechanical coupling response in circular micro-plate due to flexoelectricity. J. Mech. 33, 873–883 (2017)

    Article  Google Scholar 

  46. Ebrahimi, F., Barati, M.R.: Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J. Mech. 33, 23–33 (2017)

    Article  Google Scholar 

  47. Samani, M.S.E., Beni, Y.T.: Size dependent thermos-mechanical buckling of the flexoelectric nano beam. Mater. Res. Express 5, 085018 (2018)

    Article  Google Scholar 

  48. Ebrahimi, F., Karimiasl, M.: Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mech. Adv. Mater. Struc. 25, 943–952 (2018)

    Article  Google Scholar 

  49. Esmaeili, M., Beni, Y.T.: Vibration and buckling analysis of functionally graded flexoelectric smart beam. J. Appl. Comput. Mech. 5, 900–917 (2019)

    Google Scholar 

  50. Zhao, X., Zheng, S., Li, Z.: Bending, free vibration and buckling analyses of AFG flexoelectric nanobeams based on the strain gradient theory. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1779880

    Article  Google Scholar 

  51. Pierret, R.F.: Semiconductor Device Fundamentals. Pearson, Uttar Pradesh (1996)

    Google Scholar 

  52. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)

    Google Scholar 

  53. Wang, L.F., Liu, S.H., Feng, X.L., Zhang, C.L., Zhu, L.P., Zhai, J.Y., Qin, Y., Wang, Z.L.: Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15, 661–667 (2020)

    Article  Google Scholar 

  54. Liang, C., Zhang, C.L., Chen, W.Q., Yang, J.S.: Static buckling of piezoelectric semiconductor fibers. Mater. Res. Express 6, 125919 (2019)

    Article  Google Scholar 

  55. Gere, J.M., Timoshenko, S.P.: Mechanics of Materials, 2nd edn. Wadsworth, Belmont (1984)

    Google Scholar 

  56. Yang, W.L., Yang, J.S.: Coupled compression and bending of piezoelectric semiconductor fibers with imperfection. ZAMM (2020). https://doi.org/10.1002/zamm.201900324

    Article  Google Scholar 

  57. Masliyah, J.H., Bhattacharjee, S.: Electrokinetic and Colloid Transport Phenomena, Chapter 5. Wiley, New York (2006)

    Book  Google Scholar 

  58. Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 1. Wiley, New York (1973)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12072253, Feng Jin), 111 Project version 2.0 (Feng Jin) and the Fundamental Research Funds for the Central Universities (xzy022020016, Yilin Qu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Jin or Jiashi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Jin, F. & Yang, J. Buckling of flexoelectric semiconductor beams. Acta Mech 232, 2623–2633 (2021). https://doi.org/10.1007/s00707-021-02960-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02960-3

Navigation