A strain energy-based parameter for predicting the crack initiation angle of mixed mode fracture


In this paper, a new parameter is developed for I–II mixed mode fracture analysis based on the concepts of the volume strain energy and deviator strain energy. For most fracture conditions, it has been demonstrated that the final fracture state is not dominated by the plastic deformation during the fracture process. For instance, mixed mode crack propagation occurs not along the direction of the maximum plastic deformation near the crack-tip. Based on this phenomenon, it is considered that the crack growth behavior is promoted by the volume strain energy, but not the deviator strain energy. Therefore, a new fracture parameter defined by the ratio (H-parameter) of the volume strain energy density to the deviator strain energy density is proposed for the investigation of crack growth behavior. It is assumed that the crack initiation angle can be determined by the direction of the maximum value of the H-parameter near the crack tip. This newly proposed H-parameter method is validated by comparison with classical criteria and experiments with two materials (PMMA and polysilicon) and shows a good accuracy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Crapps, J., Daniewicz, S.R.: Weight function based Dugdale model for mixed mode crack problems with arbitrary crack surface tractions. Eng. Fract. Mech. 77(5), 793–802 (2010)

    Article  Google Scholar 

  2. 2.

    Wei, Z.G., Deng, X.M., Sutton, M.A., et al.: Modeling of mixed-mode crack growth in ductile thin sheets under combined in-plane and out-of-plane loading. Eng. Fract. Mech. 78, 3082–3101 (2011)

    Article  Google Scholar 

  3. 3.

    Ghazvinian, A., Nejati, H.R., Sarfarazi, V., et al.: Mixed mode crack propagation in low brittle rock-like materials. Arab. J. Geosci. 6, 4435–4444 (2013)

    Article  Google Scholar 

  4. 4.

    Ren, L., Zhu, Z.M., Wang, M., et al.: Mixed-mode elastic-plastic fractures: improved R-criterion. J. Eng. Mech. 140(6), 04014033 (2014)

    Article  Google Scholar 

  5. 5.

    Wang, C., Zhu, Z.M., Liu, H.J.: On the I–II mixed mode fracture of granite using four-point bend specimen. Fatigue Fract. Eng. Mater. Struct. 39, 1193–1203 (2016)

    Article  Google Scholar 

  6. 6.

    Shlyannikov, V.N., Zakharov, A.P.: Generalization of mixed mode crack behavior by the plastic stress intensity factor. Theoret. Appl. Fract. Mech. 91, 52–65 (2017)

    Article  Google Scholar 

  7. 7.

    Ayatollahi, M.R., Berto, F.: Evolution of crack tip constraint in a mode II elastic-plastic crack problem. Phys. Mesomech. 21, 173–177 (2018)

    Article  Google Scholar 

  8. 8.

    Aliha, M.R.M., Mousavi, S.S., Ghoreishi, S.M.N.: Fracture load prediction under mixed mode I+II using a stress based method for brittle materials tested with the asymmetric four-point bend specimen. Theoret. Appl. Fract. Mech. 103, 102249 (2019)

    Article  Google Scholar 

  9. 9.

    Floros, D., Ekberg, A., Larsson, F.: Evaluation of crack growth direction criteria on mixed-mode fatigue crack growth experiments. Int. J. Fatigue 129, 105075 (2019)

    Article  Google Scholar 

  10. 10.

    Hutchinson, J.W., Suo, Z.G.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29(8), 63–191 (1992)

    MATH  Google Scholar 

  11. 11.

    Mohan, J., Ivankovic, A., Murphy, N.: Mixed-mode fracture toughness of co-cured and secondary bonded composite joints. Eng. Fract. Mech. 134, 148–167 (2015)

    Article  Google Scholar 

  12. 12.

    Riahi, H., Moutou-Pitti, R., Dubois, F., et al.: Mixed-mode fracture analysis combining mechanical, thermal and hydrological effects in an isotropic and orthotropic material by means of invariant integrals. Theoret. Appl. Fract. Mech. 85, 424–434 (2016)

    Article  Google Scholar 

  13. 13.

    Miao, X.T., Yu, Q., Zhou, C.Y., et al.: Experimental and numerical investigation on fracture behavior of CTS specimen under I–II mixed mode loading. Eur. J. Mech. A Solid 72, 235–244 (2018)

    Article  Google Scholar 

  14. 14.

    Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85(4), 527 (1963)

    Article  Google Scholar 

  15. 15.

    Ren, L., Xie, L.Z., Xie, H.P., et al.: Mixed-mode fracture behavior and related surface topography feature of a typical sandstone. Rock Mech. Rock Eng. 49(8), 3137–3153 (2016)

    Article  Google Scholar 

  16. 16.

    Sajjadi, S.H., Salimi-Majd, D., Ghorabia, M.J.O.: Development of a brittle fracture criterion for prediction of crack propagation path under general mixed mode loading. Eng. Fract. Mech. 155, 36–48 (2016)

    Article  Google Scholar 

  17. 17.

    Mirsayar, M.M., Razmi, A., Aliha, M.R.M., et al.: EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Eng. Fract. Mech. 190, 186–197 (2018)

    Article  Google Scholar 

  18. 18.

    Hou, C., Jin, X.C., Fan, X.L., et al.: A generalized maximum energy release rate criterion for mixed mode fracture analysis of brittle and quasi-brittle materials. Theoret. Appl. Fract. Mech. 100, 78–85 (2019)

    Article  Google Scholar 

  19. 19.

    Sih, G.C.: Strain-energy-density factor applied to mixed mode crack problems. Int. J. Fract. 10(3), 305–321 (1974)

    Article  Google Scholar 

  20. 20.

    Palaniswamy, K., Knauss, W.G.: Propagation of a crack under general, in-plane tension. Int. J. Fract. Mech. 8(1), 114–117 (1972)

    Article  Google Scholar 

  21. 21.

    Hussain, M.A., Pu, S.L., Underwood, J.: Strain energy release rate for a crack under combined Mode I and Mode II. In: Proceeding of the 1973 National Symposium on Fracture Mechancis, Part II, pp. 2–28. ASTM International, West Conshohocken, PA (1974)

  22. 22.

    Kfouri, A.P., Brown, M.W.: A fracture criterion for cracks under mixed-mode loading. Fatigue Fract. Eng. Mater. Struct. 18(9), 959–969 (1995)

    Article  Google Scholar 

  23. 23.

    Liu, X.M., Bian, Y.M., Liang, Y.C.: The volume strain energy density factor criterion for sharp v-notches under mixed-Mode I and II. Appl. Mech. Mater. 782, 170–176 (2015)

    Article  Google Scholar 

  24. 24.

    Heydari-Meybodi, M., Ayatollahi, M.R., Berto, F.: Mixed-mode (I/II) rupture assessment of rubber-like materials weakened by cracks using the averaged strain energy density criterion. Theoret. Appl. Fract. Mech. 97, 314–321 (2017)

    Article  Google Scholar 

  25. 25.

    Manafi-Farid, H., Fakoor, M.: Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects. Theoret. Appl. Fract. Mech. 99, 147–160 (2019)

    Article  Google Scholar 

  26. 26.

    Mirsayar, M.M.: Mixed mode fracture analysis using extended maximum tangential strain criterion. Mater. Des. 86, 941–947 (2015)

    Article  Google Scholar 

  27. 27.

    Razavi, S.M.J., Aliha, M.R.M., Berto, F.: Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theoret. Appl. Fract. Mech. 97, 419–425 (2019)

    Article  Google Scholar 

  28. 28.

    Fakoor, M., Farid, H.M.: Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials. Acta Mech. 230, 281–301 (2019)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Theocaris, P.S., Andrianopoulos, N.P.: The T-criterion applied to ductile fracture. Int. J. Fract. 20(20), 125–130 (1982)

    Article  Google Scholar 

  30. 30.

    Cheng, J., Zhao, S.S.: Fracture Mechanics. Science Press, Beijing (2006).. ((in Chinese))

    Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 11772245, 11572235), the Fundamental Research Funds for the Central Universities in China, the Natural Science Basic Research Plan in Shaanxi Province of China (Program Nos. 2018JC-004, 2020JQ-011), the Exploration Program-Q of Natural Science Foundation in Zhejiang Province of China (Program No. LQ20A020010), and funded by China Postdoctoral Science Foundation (No. 2020M673374). The author Qun Li gratefully acknowledges the support of K.C. Wong Education Foundation.

Author information



Corresponding author

Correspondence to Hong Zuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Zhang, Y., Guo, H. et al. A strain energy-based parameter for predicting the crack initiation angle of mixed mode fracture. Acta Mech (2021). https://doi.org/10.1007/s00707-020-02912-3

Download citation