An effective procedure for extracting the first few bridge frequencies from a test vehicle


This study presents an effective procedure for extracting the first few bridge frequencies using the data collected by a moving test vehicle. Previously, the effectiveness of the vehicle scanning method for bridge frequencies was hampered by factors such as vehicle frequency and road surface roughness. To this end, the contact-point response of the vehicle with the bridge that is free of the vehicle frequency is adopted in the analysis. To enhance the visibility of the first few bridge frequencies for extraction, the variational mode decomposition with band-pass filter (VMD-BPF) is proposed herein. The VMD is neater and more elegant than the empirical mode decomposition (EMD) in that less decompositions are needed, while there exists no mode-coupling problem, and the BPF serves to remove the undesired roughness frequencies. To verify the feasibility of the proposed procedure, both the vehicle and contact-point responses generated either numerically or by the field test are analyzed. It is demonstrated that the VMD-BPF is an effective method for extracting the bridge frequencies using the contact-point response for the scenarios considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25


  1. 1.

    Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30, 91–105 (1998)

    Article  Google Scholar 

  2. 2.

    Carden, E.P., Fanning, P.: Vibration based condition monitoring: a review. Struct. Health Monit. 3, 355–377 (2004)

    Article  Google Scholar 

  3. 3.

    Yang, Y.B., Yang, J.P., Zhang, B., Wu, Y.T.: Vehicle Scanning Method for Bridges. Wiley, London (2020)

    Google Scholar 

  4. 4.

    Yang, Y.B., Lin, C.W., Yau, J.D.: Extracting bridge frequencies from the dynamic response of a passing vehicle. J. Sound Vib. 272, 471–493 (2004)

    Article  Google Scholar 

  5. 5.

    Yin, S.H., Tang, C.Y.: Identifying cable tension loss and deck damage in a cable-stayed bridge using a moving vehicle. J. Vib. Acoust. 133, 021007 (2011)

    Article  Google Scholar 

  6. 6.

    Yang, Y.B., Wang, Z.L., Wang, B.Q., Xu, H.: Track modulus detection by vehicle scanning method. Acta Mech. 231(7), 2955–2978 (2020)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Malekjafarian, A., McGetrick, P.J., Obrien, E.J.: A review of indirect bridge monitoring using passing vehicles. Shock Vib. 2015, 286139 (2015)

    Google Scholar 

  8. 8.

    Yang, Y.B., Yang, J.P.: State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. Int. J. Struct. Stab. Dyn. 18, 1850025 (2018)

    Article  Google Scholar 

  9. 9.

    Cooly, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Duhamel, P.: Fast fourier transforms: a tutorial review and a state of the art. Signal process. 19, 259–299 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Gabor, D.: Theory of communication. IEEE J. Inst. Electr. Eng. 93, 429–441 (1946)

    Google Scholar 

  12. 12.

    Wang, L., McCullough, M., Kareem, A.: Modeling and simulation of nonstationay processes utilizing Wavelet and Hilbert transforms. ASCE J. Eng. Mech. 140, 345–360 (2014)

    Article  Google Scholar 

  13. 13.

    Zhou, Z., Adeli, H.: Wavelet energy spectrum for time-frequency localization of earthquake energy. Int. J. Imaging Syst. Technol. 13, 133–140 (2003)

    Article  Google Scholar 

  14. 14.

    Kim, H., Adeli, H.: Hybrid control of smart structures using a novel wavelet-based algorithm. Comput. Aided Civ. Infrastruct. Eng. 20, 7–22 (2005)

    Article  Google Scholar 

  15. 15.

    Laflamme, S., Slotine, J., Connor, J.: Wavelet network for semiactive control. ASCE J. Eng. Mech. 137, 462–474 (2011)

    Article  Google Scholar 

  16. 16.

    Zhu, X.Q., Law, S.S.: Wavelet-based crack identification of bridge beam from operational deflection time history. Int. J. Solids Struct. 43, 2299–2317 (2006)

    MATH  Article  Google Scholar 

  17. 17.

    Tan, C., Elhattab, A., Uddin, N.: “Drive-by” bridge frequency-based monitoring utilizing wavelet transform. J. Civil Struct. Health Monit. 615, 615–625 (2017)

    Article  Google Scholar 

  18. 18.

    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yeh, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A. 454, 903–995 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Chen, C.H., Wang, C.H., Lui, J.Y., Lui, C., Liang, W.T., Yen, H.Y., Yeh, Y.H., Chia, Y.P., Wang, Y.: Identification of earthquakes signals from groundwater level records using the HHT method. Geophys. J. Int. 180, 1231–1241 (2010)

    Article  Google Scholar 

  20. 20.

    He, X.H., Hua, X.G., Chen, Z.Q., Huang, F.L.: EMD-based random decrement technique for modal parameter identification of an existing railway bridge. Eng. Struct. 33, 1348–1356 (2011)

    Article  Google Scholar 

  21. 21.

    Zhang, R.R., King, R., Olson, L., Xu, Y.L.: Dynamic response of the Trinity River Relief Bridge to controlled pile damage: modeling and experimental data analysis comparing Fourier and Hilbert-Huang techniques. J. Sound Vib. 285, 1049–1070 (2005)

    Article  Google Scholar 

  22. 22.

    Yang, Y.B., Chang, K.C.: Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique. J. Sound Vib. 322, 718–739 (2009)

    Article  Google Scholar 

  23. 23.

    Obrien, E.J., Malekjafarian, A., Gonzalez, A.: Application of empirical mode 711 decomposition to drive-by bridge damage detection. Eur. J. Mech. A-Solid. 61, 151–163 (2017)

    Article  Google Scholar 

  24. 24.

    Yang, J.P., Lee, W.C.: Damping effect of a passing vehicle for indirectly measuring bridge frequencies by EMD technique. Int. J. Struct. Stab. Dyn. 18, 1850008 (2018)

    Article  Google Scholar 

  25. 25.

    Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 01, 1–41 (2009)

    Article  Google Scholar 

  26. 26.

    Yeh, J.R., Shieh, J.S., Huang, N.E.: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Advan. Adapt. Data Analy. 2, 135–156 (2010)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Aied, H., González, A., Cantero, D.: Identification of sudden stiffness changes in the acceleration response of a bridge to moving loads using ensemble empirical mode decomposition. Mech. Syst. Signal Process. 66–67, 314–338 (2016)

    Article  Google Scholar 

  28. 28.

    Zhu, L., Malekjafarian, A.: On the use of ensemble empirical mode decomposition for the identification of bridge frequency from the responses measured in a passing vehicle. Infrastruct. 4, 32 (2019)

    Article  Google Scholar 

  29. 29.

    Tributsch, A., Adam, C.: A multi-step approach for identification of structural modifications based on operational modal analysis. Int. J. Struct. Stab. Dyn. 14(05), 1440004 (2014)

    MATH  Article  Google Scholar 

  30. 30.

    Tributsch, A., Adam, C.: An enhanced energy vibration-based approach for damage detection and localization. Struct. Control Health. 25(1), e2047 (2017)

    Article  Google Scholar 

  31. 31.

    Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62, 531–544 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Bagheri, A., Ozbulut, O.E., Harris, D.K.: Structural system identification based on variational mode decomposition. J. Sound Vib. 417, 182–197 (2018)

    Article  Google Scholar 

  33. 33.

    Yi, C., Lv, Y., Dang, Z.: A fault diagnosis scheme for rolling bearing based on particle swarm optimization in variational mode decomposition. Shock Vib. 2016, 1–10 (2016)

    Article  Google Scholar 

  34. 34.

    Moschas, F., Stiros, S.: Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng. Struct. 33, 10–17 (2011)

    Article  Google Scholar 

  35. 35.

    Wallin, J., Leander, J., Karoumi, R.: Strengthening of a steel railway bridge and its impact on the dynamic response to passing trains. Eng. Struct. 33, 635–646 (2011)

    Article  Google Scholar 

  36. 36.

    Yang, Y.B., Chang, K.C., Li, Y.C.: Filtering techniques for extracting bridge frequencies from a test vehicle moving over the bridge. Eng. Struct. 48, 353–362 (2013)

    Article  Google Scholar 

  37. 37.

    Yang, Y.B., Li, Y.C., Chang, K.C.: Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies. Interact. Multiscale Mech. 5, 347–368 (2012)

    Article  Google Scholar 

  38. 38.

    Yang, Y.B., Li, Y.C., Chang, K.C.: Using two connected vehicles to measure the frequencies of bridges with rough surface: a theoretical study. Acta Mech. 223, 1851–1861 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Lin, C.W., Yang, Y.B.: Use of a passing vehicle to scan the bridge frequencies: an experimental verification. Eng. Struct. 27, 1865–1878 (2005)

    Article  Google Scholar 

  40. 40.

    Yang, Y.B., Xu, H., Zhang, B., Xiong, F., Wang, Z.L.: Measuring bridge frequencies by a test vehicle in non-moving and moving states. Eng. Struct. 203, 109859 (2020)

    Article  Google Scholar 

  41. 41.

    Yang, Y.B., Zhang, B., Qian, Y., Wu, Y.T.: Contact-point response for modal identification of bridges by a moving test vehicle. Int. J. Struct. Stab. Dyn. 18, 1850073 (2018)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Yang, Y.B., Yau, J.D.: Vehicle-bridge interaction element for dynamic analysis. ASCE J. Struct. Eng. 123, 1512–1518 (1997)

    Article  Google Scholar 

  43. 43.

    Yang, Y.B., Yau, J.D., Wu, W.S.: Vehicle-Bridge Interaction Dynamics: With Applications to High-Speed Railways. World Scientific, Singapore (2004)

    Google Scholar 

  44. 44.

    Fryba, L.: Vibration of solids and structures under moving loads. Noordhoff International Publishing, Prague (1972)

    Google Scholar 

  45. 45.

    Yang, Y.B., Lin, C.W.: Vehicle-bridge interaction dynamics and potential applications. J. Sound Vib. 284, 205–226 (2005)

    Article  Google Scholar 

  46. 46.

    Biggs, J.M.: Introduction to Structural Dynamics. McGraw-Hill, New York (1964)

    Google Scholar 

  47. 47.

    Clough, R.W., Penzien, J.: Dynamics of Structures, 2nd edn. McGraw-Hill Book Co., Singapore (1993)

    Google Scholar 

  48. 48.

    ISO 8608, Mechanical Vibration-road Surface Profiles-reporting of Measured Data. International Organization for Standardization, Geneva (1995)

  49. 49.

    Lyons, R.G.: Understanding Digital Signal Processing, 3rd edn. Prentice-Hall, Boston (2011)

    Google Scholar 

  50. 50.

    Chang, K.C., Wu, F.B., Yang, Y.B.: Disk model for wheels moving over highway bridges with rough surfaces. J. Sound Vib. 330, 4930–4944 (2011)

    Article  Google Scholar 

Download references


The senior author likes to thank The Fengtay Foundation for endowment of the Fengtay Chair Professorship. This research reported herein is sponsored by the following agencies: National Natural Science Foundation of China (Grant No. 51678091) and Chongqing Science and Technology Commission (Grant No. cstc2017zdcy-yszxX0006).

Author information



Corresponding author

Correspondence to Hao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.B., Xu, H., Mo, X.Q. et al. An effective procedure for extracting the first few bridge frequencies from a test vehicle. Acta Mech (2021).

Download citation