Boundary integral equations in the frequency domain for interface linear cracks under impact loading

Abstract

The linear crack between two dissimilar elastic isotropic half-spaces under normal pulse loading is considered. The system of boundary integral equations for displacements and tractions in the frequency domain is derived from the dynamic Somigliana identity and adapted to solve the problem in the time domain. The numerical convergence of the method with respect to the number of the Fourier coefficients is proved. The effects of material properties of the bimaterial on the distribution of stress intensity factors (opening and transverse shear modes) are presented and analysed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Czekanski, A., Zozulya, V.: Comparative study of time and frequency domain approaches in contact problem for the I-mode crack under harmonic loading. Eng. Anal. Bound. Elem. 95, 200–214 (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Menshykov, O., Menshykova, M., Guz, I.A.: Effect of friction of the crack faces for a linear crack under an oblique harmonic loading. Int. J. Eng. Sci. 46, 438–458 (2008)

    Article  Google Scholar 

  3. 3.

    Menshykov, O., Guz, I.: Contact interaction of crack faces under oblique incidence of a harmonic wave. Int. J. Fract. 139, 145–152 (2006)

    Article  Google Scholar 

  4. 4.

    Menshykov, O., Guz, I.A.: Effect of contact interaction of the crack faces for a crack under harmonic loading. Int. Appl. Mech. 43(7), 809–815 (2007)

    Article  Google Scholar 

  5. 5.

    Guz, A.N., Menshykov, O.V., Zozulya, V.V.: Surface contact of elliptical crack under normally incident tension–compression wave. Theor. Appl. Fract. Mech. 40(3), 285–291 (2003)

    Article  Google Scholar 

  6. 6.

    Ostrik, V.I.: Contact of faces of a rectilinear crack under complex loading and various contact conditions. Acta Mech. 230, 3741–3758 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Matbuly, M.S.: Analytical solution for an interfacial crack subjected to dynamic anti-plane shear loading. Acta Mech. 184, 77–85 (2006)

    Article  Google Scholar 

  8. 8.

    Chen, E.P., Sih, G.C.: Transient Response of Cracks to Impact Loads, Mechanics of Fracture 4: Elastodynamic Crack Problems (Edited by G.C. Sih), pp. 1–58. Noordhoff, Leyden (1977)

  9. 9.

    Wuensche, M., Zhang, Ch., Garcia-Sanchez, F., Saez, A., Sladek, J., Sladek, V.: On two hypersingular time-domain BEM for dynamic crack analysis in 2D anisotropic elastic solids. Comput. Methods Appl. Mech. Eng. 198, 2812–2824 (2009)

    Article  Google Scholar 

  10. 10.

    Agrawal, A.K.: A study of free surface effects on moving cracks under impact loading by BEM. Eng. Anal. Bound. Elem. 26, 253–264 (2002)

    Article  Google Scholar 

  11. 11.

    Agrawal, A.K., Kishore, N.N.: A study of free surface effects on through cracks under impact loading. Eng. Anal. Bound. Elem. 25, 391–405 (2001)

    Article  Google Scholar 

  12. 12.

    Itou, S.: Dynamic stress intensity factors around a cylindrical crack in an infinite elastic medium subject to impact load. Int. J. Solids Struct. 44, 7340–7356 (2007)

    Article  Google Scholar 

  13. 13.

    Zhang, Ch., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Advances in Fracture Mechanics. WIT Press, Southampton (1997)

    Google Scholar 

  14. 14.

    Zhang, Ch., Gross, D.: Transient elastodynamic analysis of a penny-shaped crack. Eng. Fract. Mech. 46, 641–654 (1993)

    Article  Google Scholar 

  15. 15.

    Chen, B., Gross, D.: Dynamic stress intensity factors of a penny-shaped crack subjected to an annular impact. J. Appl. Math. Mech. 78(12), 861–864 (1998)

    MATH  Google Scholar 

  16. 16.

    Golub, M., Doroshenko, O.: Boundary integral equation method for simulation scattering of elastic waves obliquely incident to a doubly periodic array of interface delaminations. J. Comput. Phys. 376, 675–693 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kilic, B., Madenci, E.: Hypersingular integral equations for the solution of penny-shaped interface crack problems. J. Mech. Mater. Struct. 2(4), 729–751 (2007)

    Article  Google Scholar 

  18. 18.

    Yu, H.Y., Cooper, K.P.: Dynamic penny-shaped cracks in multilayer sandwich composites. Theor. Appl. Fract. Mech. 51, 181–188 (2009)

    Article  Google Scholar 

  19. 19.

    Mykhaskiv, V., Stankevych, V.: Elastodynamic problem for a layered composite with penny-shaped crack under harmonic torsion. Z. Angew. Math. Mech. (ZAMM) (2019). https://doi.org/10.1002/zamm.201800193

    Article  Google Scholar 

  20. 20.

    Mykhaskiv, V., Stankevych, V., Zhbadynskyi, I., Zhang, Ch.: 3-D dynamic interaction between a penny-shaped crack and a thin interlayer joining two elastic half-spaces. Int. J. Fract. 159, 137–149 (2009)

    Article  Google Scholar 

  21. 21.

    Menshykova, M., Menshykov, O., Guz, I.A.: An iterative BEM for the dynamic analysis of interface crack contact problems. Eng. Anal. Bound. Elem. 35, 735–749 (2011)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Menshykov, V., Menshykov, O., Guz, I.A.: Interfacial crack between elastic half-spaces under harmonic loading. Int. Appl. Mech. 43(8), 865–873 (2007)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Menshykova, M., Menshykov, O., Guz, I.A., Wuensche, M., Zhang, Ch.: A boundary integral equations method in the frequency domain for cracks under transient loading. Acta Mech. 227(11), 3305–3314 (2016)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Wuensche, M., Zhang, Ch., Sladek, J., Sladek, V., Hirose, S., Kuna, M.: Transient dynamic analysis of interface cracks in layered anisotropic solids under impact loading. Int. J. Fract. 157, 131–147 (2009)

    Article  Google Scholar 

  25. 25.

    Lira-Vergara, E., Rubio-Gonzalez, C.: Dynamic stress intensity factor of interfacial finite cracks in orthotropic materials. Int. J. Fract. 135, 285–309 (2005)

    Article  Google Scholar 

  26. 26.

    Li, D.H., Tai, W.H.: Elastodynamic response of an interface crack in a layered composite under anti-plane shear impact load. Eng. Fract. Mech. 39, 687–93 (1991)

    Article  Google Scholar 

  27. 27.

    Shin, D.K., Lee, J.J.: Fracture parameters of interfacial crack of bimaterial under impact loading. Int. J. Solids Struct. 38, 5303–5322 (2001)

    Article  Google Scholar 

  28. 28.

    Ueda, S., Shindo, Y., Astumi, A.: Torsional impact response of a penny-shaped crack on a bimaterial interface. Eng. Fract. Mech. 18, 1059–1066 (1983)

    Article  Google Scholar 

  29. 29.

    Karan, S., Basu, S., Mandal, S.C.: Impact of a torsional load on a penny-shaped crack sandwiched between two elastic layers embedded in an elastic medium. Acta Mech. 229, 1759–1772 (2018)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Guz, A.N., Zozulya, V.V.: Elastodynamic unilateral contact problems with friction for bodies with cracks. Int. Appl. Mech. 38, 895–932 (2002)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Mineola (1964)

    Google Scholar 

  32. 32.

    Sladek, J., Sladek, V.: Dynamic stress intensity factors studied by boundary integro-differential equations. Int. J. Numer. Methods Eng. 32, 919–928 (1986)

    Article  Google Scholar 

  33. 33.

    Menshykova, M.V., Menshykov, O.V., Guz, I.A.: Modelling crack closure for an interface crack under harmonic loading. Int. J. Fract. 165, 127–134 (2010)

    Article  Google Scholar 

  34. 34.

    Menshykov, O.V., Menshykov, V.A., Guz, I.A.: Elastodynamics of a crack on the bimaterial interface. Eng. Anal. Bound. Elem. 33(3), 294–301 (2009)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Guz, A.N., Guz, I.A., Menshykov, O.V., Menshykov, V.A.: Penny-shaped crack at the interface between elastic half-spaces under the action of a shear wave. Int. Appl. Mech. 45(5), 534–539 (2009)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Menshykov, O.V., Menshykova, M.V., Wendland, W.L.: On use the Galerkin method to solve the elastodynamic problem for a linear crack under normal loading. Int. Appl. Mech. 41(11), 1324–1329 (2005)

    Article  Google Scholar 

  37. 37.

    Balas, S., Sladek, J., Sladek, V.: Stress Analysis by the Boundary Element Methods. Elsevier, Amsterdam (1989)

    Google Scholar 

  38. 38.

    Aliabadi, M.H., Rook, D.P.: Numerical Fracture Mechanics. Computational Mechanics Publications and Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  39. 39.

    Menshykov, O.V., Menshykova, M.V., Guz, I.A.: Effects of crack closure and friction for linear crack under normal impact. Eng. Anal. Bound. Elem. 115, 1–9 (2020)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Menshykov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menshykov, O.V., Menshykova, M.V. & Guz, I.A. Boundary integral equations in the frequency domain for interface linear cracks under impact loading. Acta Mech (2020). https://doi.org/10.1007/s00707-020-02743-2

Download citation