Surface effects on the elastic modulus of regular polygonal prism nanoporous materials

Abstract

Nanoporous materials exhibit remarkable mechanical properties, which are influenced by their surface effects and microstructures. Here, we theoretically analyze Young’s modulus of various regular polygonal prism structures, which represent the first-level (conventional) nanoporous material and higher-level hierarchical nanoporous material. The effects of surface elastic modulus, porosity, residual surface stress, and side number on Young’s modulus of a regular polygonal prism unit cell are investigated in detail. The results reveal that Young’s modulus is controlled by the surface elastic modulus, but it is not sensitive to the residual surface stress. This trend is in good consistency with the existing work. Moreover, the effective modulus strongly depends upon the surface elastic modulus. Under the certain range of high porosity, maximum Young’s modulus always relies on a critical side number of 6, regardless of the surface effect and hierarchical structure. Interestingly, for different regular polygonal prism structures, the difference in effective modulus tends to decrease with the increasing porosity. The current findings provide insights to improve the mechanical properties of nanoporous materials via tuning microstructure, porosity, and surface elastic modulus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Stephani, G., Quadbeck, P., Andersen, O.: New multifunctional lightweight materials based on cellular metals—manufacturing, properties and applications. J. Phys. Conf. Ser. 165, 012061 (2009)

    Article  Google Scholar 

  2. 2.

    Currey, J.D.: Hierarchies in biomineral structures. Mater. Sci. 309, 253–254 (2005)

    Google Scholar 

  3. 3.

    Aizenberg, J.: Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005)

    Article  Google Scholar 

  4. 4.

    Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)

    Article  Google Scholar 

  5. 5.

    Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008)

    Article  Google Scholar 

  6. 6.

    Weiner, S., Wagner, H.D.: The material bone: structure–mechanical function relations. Ann. Rev. Mater. Res. 28, 271–298 (2003)

    Google Scholar 

  7. 7.

    Evans, L.A., Mccutcheon, A.L., Dennis, G.R., Mulley, R.C., Wilson, M.A.: Pore size analysis of fallow deer (dama dama) antler bone. J. Mater. Sci. 40, 5733–5739 (2005)

    Article  Google Scholar 

  8. 8.

    Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., Satcher, J.H.: Nanoporous Au: a high yield strength material. J. Appl. Phys. 97, 024301 (2005)

    Article  Google Scholar 

  9. 9.

    Biener, J., Hodge, A.M., Hamza, A.V.: Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 87, 121908 (2005)

    Article  Google Scholar 

  10. 10.

    Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., Abraham, F.F.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379–2382 (2006)

    Article  Google Scholar 

  11. 11.

    Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., Hamza, A.V.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343–1349 (2007)

    Article  Google Scholar 

  12. 12.

    Volkert, C.A., Lilleodden, E.T., Kramer, D., Weissmüller, J.: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006)

    Article  Google Scholar 

  13. 13.

    Lee, D., Wei, X., Chen, X., Zhao, M., Jun, S.C., Hone, J., et al.: Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scr. Mater. 56, 437–440 (2006)

    Article  Google Scholar 

  14. 14.

    Lee, J.H., Wang, L., Boyce, M.C., Thomas, E.L.: Periodic bicontinuous composites for high specific energy absorption. Nano Lett. 12, 4392–4396 (2012)

    Article  Google Scholar 

  15. 15.

    Meza, L.R., Das, S., Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014)

    Article  Google Scholar 

  16. 16.

    Jang, D., Meza, L.R., Greer, F., Greer, J.R.: Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12, 893–898 (2013)

    Article  Google Scholar 

  17. 17.

    Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., Deotte, J., Duoss, E.B., Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014)

    Article  Google Scholar 

  18. 18.

    Zheng, X., Smith, W., Jackson, J., Moran, B., Cui, H., Chen, D., Ye, J., Fang, N., Rodriguez, N., Weisgraber, T., Spadaccini, M.: Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016)

    Article  Google Scholar 

  19. 19.

    Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., Carter, W.B.: Ultralight metallic microlattices. Science 334, 962–965 (2011)

    Article  Google Scholar 

  20. 20.

    Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., Kraft, O.: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. 111, 2453–2458 (2014)

    Article  Google Scholar 

  21. 21.

    do Rosário, J.J., Lilleodden, E.T., Waleczek, M., Kubrin, R., Petrov, A.Y., Dyachenko, P.N., et al.: Self-assembled ultra high strength, ultra stiff mechanical metamaterials based on inverse opals. Adv. Eng. Mater. 17, 1420–1424 (2015)

    Article  Google Scholar 

  22. 22.

    Pikul, J.H., Özerinç, S., Liu, B., Zhang, R., Braun, P.V., Deshpande, V.S., King, W.P.: High strength metallic wood from nanostructured nickel inverse opal materials. Sci. Rep. 9, 719 (2019)

    Article  Google Scholar 

  23. 23.

    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Li, J.J., Weng, G.J., Chen, S.H., Wu, X.L.: On strain hardening mechanism in gradient nanostructures. Int. J. Plast. 88, 89–107 (2017)

    Article  Google Scholar 

  25. 25.

    Li, J.J., Lu, W., Chen, S., Liu, C.: Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures. Int. J. Plast. 126, 102626 (2019)

    Article  Google Scholar 

  26. 26.

    Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. 78, 1093–1109 (1998)

    Article  Google Scholar 

  27. 27.

    Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)

    Article  Google Scholar 

  28. 28.

    Chen, C.Q., Zhu, J.: Bending strength and flexibility of ZnO nanowires. Appl. Phys. Lett. 90, 1897 (2007)

    Google Scholar 

  29. 29.

    Lu, D., Xie, Y.M., Li, Q., Huang, X., Zhou, S.: Towards ultra-stiff materials: surface effects on nanoporous materials. Appl. Phys. Lett. 105, 101903 (2014)

    Article  Google Scholar 

  30. 30.

    Feng, X.Q., Xia, R., Li, X., Li, B.: Surface effects on the elastic modulus of nanoporous materials. Appl. Phys. Lett. 94, 11916 (2009)

    Article  Google Scholar 

  31. 31.

    Xia, R., Feng, X.Q., Wang, G.F.: Effective elastic properties of nanoporous materials with hierarchical structure. Acta Mater. 59, 6801–6808 (2011)

    Article  Google Scholar 

  32. 32.

    Zhu, H.X.: Size-dependent elastic properties of micro- and nano-honeycombs. J. Mech. Phys. Solids 58, 696–709 (2010)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Lu, D., Xie, Y.M., Li, Q., Huang, X., Li, Y.F., Zhou, S.: A finite-element approach to evaluating the size effects of complex nanostructures. R. Soc. Open Sci. 3, 160625 (2016)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Wang, X.S., Xia, R.: Size-dependent effective modulus of hierarchical nanoporous foams. EPL 92, 16004 (2010)

    Article  Google Scholar 

  35. 35.

    Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. A 382, 43–59 (1982)

    Google Scholar 

  36. 36.

    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  37. 37.

    Zhu, H.X.: The effects of surface and initial stresses on the bending stiffness of nanowires. Nano 19, 405703 (2008)

    Google Scholar 

  38. 38.

    Zhu, H.X., Wang, J.X., Karihaloo, B.L.: Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J. Mech. Mater. Struct. 4, 589–604 (2009)

    Article  Google Scholar 

  39. 39.

    Mathur, A., Erlebacher, J.: Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90, 061910–061910-3 (2007)

  40. 40.

    Volkert, C.A., Lilleodden, E.T., Kramer, D., Weissmüller, J.: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006)

    Article  Google Scholar 

  41. 41.

    Lu, D.J., Xie, Y.M., Li, Q., Huang, X.D., Zhou, S.W.: Investigating size effects of complex nanostructures through Young–Laplace equation and finite element analysis. J. Appl. Phys. 118, 204301 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the supports from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004), the National Natural Science Foundation of China (51871092, 11772122 and 51771233), the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (71865015) and the National Key Research and Development Program of China (2016YFB0700300).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, Q., Zhao, L. & Li, J. Surface effects on the elastic modulus of regular polygonal prism nanoporous materials. Acta Mech (2020). https://doi.org/10.1007/s00707-020-02737-0

Download citation