On finite bending of visco-hyperelastic materials: a novel analytical solution and FEM

Abstract

In this paper, an analytical approach is proposed to examine the finite strain time-dependent behavior of incompressible, isotropic visco-hyperelastic elastomeric material under bending. Phenomenological hyperelastic invariant-based strain energy density function, Yeoh model, and N-termed Prony series are utilized to define the strain-dependent and time-dependent parts of the visco-hyperelastic constitutive model, respectively. 3D finite element analysis of the problem is carried out using ABAQUS/Visco to verify the analytical solution results. Material parameters of polyurea are calibrated using an optimization framework for experimental results under five different strain rates, simultaneously. Two well-known tests of viscoelastic materials, stress relaxation and creep tests, are investigated both analytically and numerically. Distribution of the Cauchy stress components and the resultant bending moment versus time, and the variation of the mentioned results with different rise times and ultimate bent angles are provided for the stress relaxation test. Moreover, the strain and bending angle results are plotted in a creep test for different rise times and applied moments. Besides, a multi-step relaxation test and creep recovery test are performed for different loading conditions. Finite element method results confirm the analytical approach with great compatibility.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Lee, S., Reuveny, A., Reeder, J., Lee, S., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y.: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472 (2016)

    Google Scholar 

  2. 2.

    She, Y., Chen, J., Shi, H., Su, H.-J.: Modeling and validation of a novel bending actuator for soft robotics applications. Soft Robot. 3(2), 71–81 (2016)

    Google Scholar 

  3. 3.

    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467 (2015)

    Google Scholar 

  4. 4.

    Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Google Scholar 

  5. 5.

    Rivlin, R.S.: Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 195(1043), 463–473 (1949)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ogden, R.W.: Non-linear Elastic Deformations. Courier Corporation, Chelmsford (1997)

    Google Scholar 

  7. 7.

    Destrade, M., Annaidh, A.N., Coman, C.D.: Bending instabilities of soft biological tissues. Int. J. Solids Struct. 46(25–26), 4322–4330 (2009)

    MATH  Google Scholar 

  8. 8.

    Hill, J.M., Milan, A.M.: Finite elastic plane strain bending of sectors of circular cylindrical tubes. Int. J. Eng. Sci. 39(2), 209–227 (2001)

    MATH  Google Scholar 

  9. 9.

    Hill, J.M.: Partial solutions of finite elasticity-three dimensional deformations. Z. für Angew. Math. und Phys. ZAMP 24(4), 609–618 (1973)

    MATH  Google Scholar 

  10. 10.

    Destrade, M., Ogden, R., Sgura, I., Vergori, L.: Straightening: existence, uniqueness and stability. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2164), 20130709 (2014)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Sigaeva, T., Mangan, R., Vergori, L., Destrade, M., Sudak, L.: Wrinkles and creases in the bending, unbending and eversion of soft sectors. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2212), 20170827 (2018)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Shojaeifard, M., Bayat, M.R., Baghani, M.: Swelling-induced finite bending of functionally graded pH-responsive hydrogels: a semi-analytical method. Appl. Math. Mech. 40(5), 679–694 (2019)

    MathSciNet  Google Scholar 

  13. 13.

    Shojaeifard, M., Rouhani, F., Baghani, M.: A combined analytical—numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels. J. Intell. Mater. Syst. Struct. 1045389X19849253 (2019)

  14. 14.

    Shojaeifard, M., Baghani, M.: On the finite bending of functionally graded light-sensitive hydrogels. Meccanica 54(6), 841–854 (2019)

    MathSciNet  Google Scholar 

  15. 15.

    He, L., Lou, J., Du, J., Wang, J.: Finite bending of a dielectric elastomer actuator and pre-stretch effects. Int. J. Mech. Sci. 122, 120–128 (2017)

    Google Scholar 

  16. 16.

    Shojaeifard, M., Tahmasiyan, S., Baghani, M.: Swelling response of functionally graded temperature-sensitive hydrogel valves: analytic solution and finite element method. J. Int. Mater. Sys. Struct. 31(3), 457–474 (2020)

    Google Scholar 

  17. 17.

    Bayat, M.R., Dolatabadi, R., Baghani, M.: Transient swelling response of pH-sensitive hydrogels: a monophasic constitutive model and numerical implementation. Int. J. Pharm. 577, 119030 (2020)

    Google Scholar 

  18. 18.

    Sheikhi, S., Shojaeifard, M., Baghani, B.: Finite bending and straightening of hyperelastic materials: analytical solution and FEM. Int. J. Appl. Mech. 11(9), 1950084 (2019)

    Google Scholar 

  19. 19.

    Valiollahi, A., Shojaeifard, M., Baghani, M.: Implementing stretch-based strain energy functions in large coupled axial and torsional deformations of functionally graded cylinder. Int. J. Appl. Mech. 11(04), 1950039 (2019)

    Google Scholar 

  20. 20.

    Valiollahi, A., Shojaeifard, M., Baghani, M.: Closed form solutions for large deformation of cylinders under combined extension-torsion. Int. J. Mech. Sci. 157, 336–347 (2019)

    Google Scholar 

  21. 21.

    Ehlers, W., Eipper, G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130(1–2), 17–27 (1998)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Gou, K., Muddamallappa, M.S.: An analytic study on nonlinear radius change for hyperelastic tubular organs under volume expansion. Acta Mech 231, 1503–1517 (2020)

    MathSciNet  Google Scholar 

  23. 23.

    Kadlowec, J., Wineman, A., Hulbert, G.: Elastomer bushing response: experiments and finite element modeling. Acta Mech. 163(1–2), 25–38 (2003)

    MATH  Google Scholar 

  24. 24.

    Hartmann, S.: Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. Acta Mech. 148(1–4), 129–155 (2001)

    MATH  Google Scholar 

  25. 25.

    Shojaeifard, M., Baghani, M., Shahsavari, H.: Rutting investigation of asphalt pavement subjected to moving cyclic loads: an implicit viscoelastic-viscoplastic-viscodamage FE framework. Int. J. Pavement Eng. (2018). https://doi.org/10.1080/10298436.2018.1546008

  26. 26.

    Horr, A., Schmidt, L.: Modelling of nonlinear damping characteristics of a viscoelastic structural damper. Eng. Struct. 18(2), 154–161 (1996)

    Google Scholar 

  27. 27.

    Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vib. 262(3), 457–474 (2003)

    Google Scholar 

  28. 28.

    Nakra, B.: Vibration control in machines and structures using viscoelastic damping. J. Sound Vib. 211(3), 449–466 (1998)

    Google Scholar 

  29. 29.

    Kazempour, M., Baniassadi, M., Shahsavari, H., Remond, Y., Baghani, M.: Homogenization of heterogeneous brain tissue under quasi-static loading: a visco-hyperelastic model of a 3D RVE. Biomech. Model. Mechanobiol. 18(4), 969–981 (2019)

    Google Scholar 

  30. 30.

    Laksari, K., Shafieian, M., Darvish, K.: Constitutive model for brain tissue under finite compression. J. Biomech. 45(4), 642–646 (2012)

    Google Scholar 

  31. 31.

    Ward, I.M., Sweeney, J.: Mechanical Properties of Solid Polymers. Wiley, Hoboken (2012)

    Google Scholar 

  32. 32.

    Johnson, A., Quigley, C.: A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chem. Technol. 65(1), 137–153 (1992)

    Google Scholar 

  33. 33.

    Goh S.M.: An Engineering Approach to Food Texture Studies, Ph.D. Dissertation, Imperial College of Science, Technology and Medicine, London (2002)

  34. 34.

    Treloar, L.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1975)

    Google Scholar 

  35. 35.

    Rebouah, M., Chagnon, G.: Permanent set and stress-softening constitutive equation applied to rubber-like materials and soft tissues. Acta Mech. 225(6), 1685–1698 (2014)

    MathSciNet  Google Scholar 

  36. 36.

    Khajehsaeid, H., Arghavani, J., Naghdabadi, R.: A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech.-A/Solids 38, 144–151 (2013)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Darijani, H., Naghdabadi, R.: Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mech. 213(3–4), 235–254 (2010)

    MATH  Google Scholar 

  38. 38.

    Lamela, M., Prado, Y., Fernández, P., Fernández-Canteli, A., Tanaka, E.: Non-linear viscoelastic model for behaviour characterization of temporomandibular joint discs. Exp. Mech. 51(8), 1435–1440 (2011)

    Google Scholar 

  39. 39.

    Mendis, K., Stalnaker, R., Advani, S.: A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. 117(3), 279–285 (1995)

    Google Scholar 

  40. 40.

    Quigley, C.J., Mead, J., Johnson, A.R.: Large strain viscoelastic constitutive models for rubber, Part II: determination of material constants. Rubber Chem. Technol. 68(2), 230–247 (1995)

    Google Scholar 

  41. 41.

    Khajehsaeid, H., Baghani, M., Naghdabadi, R.: Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: a compressible visco-hyperelastic approach. Int. J. Mech. Mater. Des. 9(4), 385–399 (2013)

    Google Scholar 

  42. 42.

    Karimi, A., Navidbakhsh, M., Beigzadeh, B.: A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue cell 46(1), 97–102 (2014)

    Google Scholar 

  43. 43.

    Gamonpilas, C., McCuiston, R.: A non-linear viscoelastic material constitutive model for polyurea. Polymer 53(17), 3655–3658 (2012)

    Google Scholar 

  44. 44.

    Goh, S., Charalambides, M., Williams, J.: Determination of the constitutive constants of non-linear viscoelastic materials. Mech. Time-Depend. Mater. 8(3), 255–268 (2004)

    Google Scholar 

  45. 45.

    Shim, J., Mohr, D.: Rate dependent finite strain constitutive model of polyurea. Int. J. Plast. 27(6), 868–886 (2011)

    MATH  Google Scholar 

  46. 46.

    Li, C., Lua, J.: A hyper-viscoelastic constitutive model for polyurea. Mater. Lett. 63(11), 877–880 (2009)

    Google Scholar 

  47. 47.

    Naghdabadi, R., Baghani, M., Arghavani, J.: A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation. Finite Elem. Anal. Des. 62, 18–27 (2012)

    MathSciNet  Google Scholar 

  48. 48.

    Khajehsaeid, H., Arghavani, J., Naghdabadi, R., Sohrabpour, S.: A visco-hyperelastic constitutive model for rubber-like materials: a rate-dependent relaxation time scheme. Int. J. Eng. Sci. 79, 44–58 (2014)

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Fahimi, S., Baghani, M., Zakerzadeh, M.-R., Eskandari, A.: Developing a visco-hyperelastic material model for 3D finite deformation of elastomers. Finite Elem. Anal. Des. 140, 1–10 (2018)

    MathSciNet  Google Scholar 

  50. 50.

    Wineman, A.: Nonlinear viscoelastic solids–a review. Math. Mech. Solids 14(3), 300–366 (2009)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Goh, S.M., Charalambides, M.N., Williams, J.G.: Determination of the constitutive constants of non-linear viscoelastic materials. Mech. Time-Depend. Mater. 8(3), 255–268 (2004)

    Google Scholar 

  52. 52.

    Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66(5), 754–771 (1993)

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mostafa Baghani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shojaeifard, M., Sheikhi, S., Baniassadi, M. et al. On finite bending of visco-hyperelastic materials: a novel analytical solution and FEM. Acta Mech (2020). https://doi.org/10.1007/s00707-020-02733-4

Download citation