An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal

Abstract

A plane problem is analysed for an electrically permeable crack in a bi-material composed of two semi-infinite 1D piezoelectric quasicrystals bonded together. The polarization direction coincides with the quasiperiodic direction of the materials and is orthogonal to the interface. Uniformly distributed phonon normal and shear in-plane stresses and also phason stress and electric displacement are applied at infinity. The matrix–vector representations for the phonon and phason stresses, the electrical displacement and for the derivatives of the phonon and phason displacements and electrical potentials jumps via the sectional-holomorphic vector-function are derived. Using these relations and satisfying the conditions at the crack faces, the problems of linear relationship are formulated and solved exactly. All required phonon and phason characteristics are given in the form of simple analytical expressions. A numerical analysis is carried out for two different 1D piezoelectric quasicrystals bonded together. The obtained results are presented in graph and table forms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Google Scholar 

  2. 2.

    Hu, C.Z., Wang, R.H., Ding, D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63(1), 1–39 (2000)

    MathSciNet  Google Scholar 

  3. 3.

    Fan, T.Y., Mai, Y.W.: Elasticity theory, fracture mechanics and some relevant thermal properties of quasicrystal materials. Appl. Mech. Rev. 57, 325–344 (2004)

    Google Scholar 

  4. 4.

    Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and its Applications. Springer, Beijing (2011)

    Google Scholar 

  5. 5.

    Fan, T.Y., Sun, Y.F.: A moving screw dislocation in a one-dimensional hexagonal quasicrystal. Acta Phys. Sin. 8(4), 288–295 (1999)

    MathSciNet  Google Scholar 

  6. 6.

    Li, X.F., Sun, Y.F., Fan, T.Y.: Elastic field of a straight dislocation in one dimensional hexagonal quasicrystals. J. Beijing Inst. Technol. 212(1), 66–71 (1999)

    Google Scholar 

  7. 7.

    Enrico, R., Paolo, M.M.: Stationary straight cracks in quasicrystals. Int. J. Fract. 166(1), 105–120 (2010)

    Google Scholar 

  8. 8.

    Gao, Y., Ricoeur, A., Zhang, L.L.: Plane problems of cubic quasicrystal media with an elliptic hole or a crack. Phys. Lett. A 375(28), 2775–2781 (2011)

    Google Scholar 

  9. 9.

    Wang, X., Zhong, Z.: Interaction between a semi-infinite crack and a straight dislocation in a decagonal quasicrystal. Int. J. Eng. Sci. 42(5–6), 521–538 (2004)

    Google Scholar 

  10. 10.

    Liu, G.T., Guo, R.P., Fan, T.Y.: On the interaction between dislocations and cracks in one dimensional hexagonal quasi-crystals. Chin. Phys. B 12(10), 1149–1155 (2003)

    Google Scholar 

  11. 11.

    Li, L.H., Liu, G.T.: Interaction of a dislocation with an elliptical hole in icosahedral quasicrystals. Philos. Mag. Lett. 93(3), 142–151 (2013)

    Google Scholar 

  12. 12.

    Li, X.Y.: Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int. J. Solids Struct. 51(6), 1442–1455 (2014)

    Google Scholar 

  13. 13.

    Sladek, J., Sladek, V., Atluri, S.N.: Path-independent integral in fracture mechanics of quasicrystals. Eng. Fract. Mech. 140, 61–71 (2015)

    Google Scholar 

  14. 14.

    Wang, Z., Ricoeur, A.: Numerical crack path prediction under mixed-mode loading in 1D quasicrystals. Theor. Appl. Fract. Mech. 90, 122–132 (2017)

    Google Scholar 

  15. 15.

    Li, P., Li, X., Kang, G.: Crack tip plasticity of a half-infinite Dugdale crack embedded in an infinite space of one-dimensional hexagonal quasicrystal. Mech. Res. Commun. 70, 72–78 (2015)

    Google Scholar 

  16. 16.

    Wang, Y.W., Wu, T.H., Li, X.Y., Kang, G.Z.: Fundamental elastic field in an infinite medium of two-dimensional hexagonal quasicrystal with a planar crack: 3D exact analysis. Int. J. Solids Struct. 66, 171–183 (2015)

    Google Scholar 

  17. 17.

    Li, X.Y., Wang, Y.W., Li, P.D., Kang, G.Z., Müller, R.: Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack. Theor. Appl. Fract. Mech. 88, 18–30 (2017)

    Google Scholar 

  18. 18.

    Li, P.D., Li, X.Y., Kang, G.Z.: Axisymmetric thermo-elastic field in an infinite one-dimensional hexagonal quasi-crystal space containing a penny-shaped crack under anti-symmetric uniform heat fluxes. Eng. Fract. Mech. 190, 74–92 (2018)

    Google Scholar 

  19. 19.

    Li, X.Y.: Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of one-dimensional hexagonal quasicrystal under thermal loading. Proc. R. Soc. A. 469, 20130023 (2013)

    MATH  Google Scholar 

  20. 20.

    Li, P.D., Li, X.Y., Zheng, R.F.: Thermo-elastic Green’s functions for an infinite bi-material of one-dimensional hexagonal quasicrystals. Phys. Lett. A 377, 637–642 (2013)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Li, Y., Xu, G.T., Zhao, M.H.: Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech. Res. Commun. 74, 39–44 (2016)

    Google Scholar 

  22. 22.

    Cheng, H., Fan, T.Y., Hu, H.Y., Sun, Z.F.: Is the crack opened or closed in soft-matter pentagonal and decagonal quasicrystal. Theor. Appl. Fract. Mech. 95, 248–252 (2018)

    Google Scholar 

  23. 23.

    Tupholme, G.E.: Row of shear cracks moving in one-dimensional hexagonal quasicrystal line materials. Eng. Fract. Mech. 134, 451–458 (2015)

    Google Scholar 

  24. 24.

    Rao, K.R.M., Rao, P.H., Chaitanya, B.S.K.: Piezoelectricity in quasicrystals. Pramana-J. Phys. 68(3), 481–487 (2007)

    Google Scholar 

  25. 25.

    Altay, G., Dömeci, M.C.: On the fundamental equations of piezoelasticity of quasicrystal media. Int. J. Solids Struct. 49(23–24), 3255–3262 (2012)

    Google Scholar 

  26. 26.

    Yu, J., Guo, J.H., Xing, Y.M.: Complex variable method for an anti-plane elliptical cavity of one-dimensional hexagonal piezoelectric quasicrystals. Chin. J. Aeronaut. 28(4), 1287–1295 (2015)

    Google Scholar 

  27. 27.

    Yang, J., Li, X.: Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects. Theor. Appl. Fract. Mech. 82, 17–24 (2016)

    Google Scholar 

  28. 28.

    Zhang, L., Wu, D., Xu, W., Yang, L., Ricoeur, A., Wang, Z., Gao, Y.: Green’s functions of one-dimensional quasicrystal bi-material with piezoelectric effect. Phys. Lett. A 380, 3222–3228 (2016)

    MathSciNet  Google Scholar 

  29. 29.

    Li, X.Y., Li, P.D., Wu, T.H., Shi, M.X., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378, 826–834 (2014)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Fan, C.Y., Li, Y., Xu, G.T., Zhao, M.H.: Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech. Res. Commun. 74, 39–44 (2016)

    Google Scholar 

  31. 31.

    Zhou, Y.B., Li, X.F.: Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack. Eur. J. Mech./A Solids 76, 224–234 (2019)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Zhou, Y.B., Li, X.F.: Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Eng. Fract. Mech. 189, 133–147 (2018)

    Google Scholar 

  33. 33.

    Yang, J., Zhou, Y.T., Ma, H.L., Ding, S.H., Li, X.: The fracture behavior of two asymmetrical limited permeable cracks emanating from an elliptical hole in one-dimensional hexagonal quasicrystals with piezoelectric effect. Int. J. Solids Struct. 108, 175–185 (2017)

    Google Scholar 

  34. 34.

    Tupholme, G.E.: A non-uniformly loaded anti-plane crack embedded in a half-space of a one-dimensional piezoelectric quasicrystal. Meccanica 53, 973–983 (2018)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Zhao, M.H., Dang, H.Y., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, Part 1: Theoretical solution. Eng. Fract. Mech. 179, 59–78 (2017)

    Google Scholar 

  36. 36.

    Zhao, M.H., Dang, H.Y., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, Part 2: Numerical method. Eng. Fract. Mech. 180, 268–281 (2017)

    Google Scholar 

  37. 37.

    Hu, K.Q., Jin, H., Yang, Z., Chen, X.: Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect. Acta Mech. 230, 2455–2474 (2019)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Herrmann, K.P., Loboda, V.V., Govorukha, V.B.: On contact zone models for an interface crack with electrically insulated crack surfaces in a piezoelectric bimaterial. Int. J. Fract. 111, 203–227 (2001)

    Google Scholar 

  39. 39.

    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1975)

    Google Scholar 

  40. 40.

    Rice, J.R.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55, 98–103 (1988)

    Google Scholar 

  41. 41.

    Eshelby, J.D., Read, W.T., Shockley, W.: Anisotropic elasticity with application to dislocation theory. Acta Metall. 1, 251–259 (1953)

    Google Scholar 

  42. 42.

    Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was sponsored by a public grant overseen by the French National Research Agency as part of the “Investissements d’Avenir” through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and by the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001) within the framework of the program WOW PhD Mentoring.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Loboda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: General solution of Eq. (6)

Assuming that all fields are independent on the coordinate \(x_{2}\), the solution of Eq. (6) according to the method suggested in [41] can be presented in the form:

$$\begin{aligned} {\mathbf{V}}={\mathbf{a}}\;{\mathbf{f}}(z), \end{aligned}$$
(A.1)

where \(z=x_{1} +p\,x_{3} \), and the vector \({\mathbf{a}} =[a_{1}, a_{2}, a_{3}, a_{4}]^{T}\) can be found from the relation

$$\begin{aligned} \left[ {{\mathbf{Q}}+p({\mathbf{E}}+{\mathbf{E}}^{T})+p^{2}{\mathbf{T}}}\right] \,{\mathbf{a}}=0. \end{aligned}$$
(A.2)

The elements of the \(5\times 5\) matrices Q, E, and T are defined as

$$\begin{aligned} {\mathbf{Q}}=\left[ \begin{array}{lll} {c_{1jk1} } &{}\quad {e_{1j1} } &{}\quad {R_{1j31} } \\ {e_{1k1} } &{}\quad {-\xi _{11} } &{}\quad {\tilde{{e}}_{131} } \\ {R_{k131} } &{}\quad {\tilde{{e}}_{131} } &{}\quad {-K_{3131} } \\ \end{array}\right] , {\mathbf{E}}=\left[ \begin{array}{lll} {c_{1jk2} } &{}\quad {e_{21j1} } &{}\quad {R_{j132} } \\ {e_{1k2} } &{}\quad {-\xi _{12} } &{}\quad {\tilde{{e}}_{132} } \\ {R_{k231} } &{}\quad {\tilde{{e}}_{132} } &{}\quad {K_{3132} } \\ \end{array}\right] , {\mathbf{T}}=\left[ \begin{array}{lll} {c_{2jk2} } &{}\quad {e_{2j2} } &{}\quad {R_{j232} } \\ {e_{2k2} } &{}\quad {-\xi _{22} } &{}\quad {\tilde{{e}}_{232} } \\ {R_{k232} } &{}\quad {\tilde{{e}}_{232} } &{}\quad {K_{3232} } \\ \end{array}\right] . \end{aligned}$$

A nontrivial solution of Eq. (A.2) exists if p is a root of the equation

$$\begin{aligned} \det \,\left[ {{\mathbf{Q}}+p({\mathbf{E}}+{\mathbf{E}}^{T})+p^{2}{\mathbf{T}}} \right] =0. \end{aligned}$$
(A.3)

Since Eq. (A.3) has no real roots [42] we denote the roots of Eq. (A.3) with positive imaginary parts as \(p_{\alpha }\) and the associated eigenvectors of (A.2) as \({\mathbf{a}}_{\alpha }\) (subscript \(\alpha \) here and afterwards takes the numbers 1–5). The most general real solution of Eq. (6) can be presented as [42]

$$\begin{aligned} {\mathbf{V}}={\mathbf{A}}\,{\mathbf{f}}(z)+{\bar{{\mathbf{A}}}}\,{\bar{{\mathbf{f}}}}(\bar{{z}}), \end{aligned}$$
(A.4)

where \({\mathbf{A}}=[{{\mathbf{a}}_{1}, {\mathbf{a}}_{2}, {\mathbf{a}}_{3}, {\mathbf{a}}_{4}, {\mathbf{a}}_{5}}]\) is a matrix composed of eigenvectors, \({\mathbf{f}}(z)=[f_{1} (z_{1} ),f_{2} (z_{2} ), f_{3} (z_{3}), f_{4} (z_{4}), f_{5} (z_{5} )]^{\mathrm{T}}\) is an arbitrary vector function, \(z_{\alpha } =x_{1} +p_{\alpha }\,x_{3}\), and the overbar stands for the complex conjugate.

Using Eqs. (1)–(3) the vector t introduced by Eq. (7) can be represented in the form

$$\begin{aligned} \mathbf{t}=\mathbf{B}\,\mathbf{f}'(z)+\bar{\mathbf{B}}\,\bar{\mathbf{f}}'(\bar{z}), \end{aligned}$$
(A.5)

where the \(5\times 5\) matrix B is defined as

$$\begin{aligned} {\mathbf{B}}=[{{\mathbf{b}}_{1} ,{\mathbf{b}}_{2} ,{\mathbf{b}}_{3}, {\mathbf{b}}_{4} ,{\mathbf{b}}_{5}}] \end{aligned}$$

with

$$\begin{aligned} {\mathbf{b}}_{\alpha }= & {} ({\mathbf{R}}^{T}+p_{\alpha } {\mathbf{T}}){\mathbf{a}}_{\alpha }\ (\hbox {not summed over index}\ \alpha ) \end{aligned}$$
(A.6)

and

$$\begin{aligned} \mathbf{f}'(z)=\left[ {\frac{\mathrm{d}f_{1} (z_{1} )}{\mathrm{d}z_{1}}, \frac{\mathrm{d}f_{2} (z_{2} )}{\mathrm{d}z_{2} },\frac{\mathrm{d}f_{3} (z_{3} )}{\mathrm{d}z_{3}}, \frac{\mathrm{d}f_{4} (z_{4} )}{\mathrm{d}z_{4} },\frac{\mathrm{d}f_{5} (z_{5} )}{\mathrm{d}z_{5} }}\right] ^{T}. \end{aligned}$$
(A.7)

Appendix 2: Solution for a composite of two 1D hexagonal piezoelectric QCs with mixed boundary conditions at the interface

A bimaterial composed of two different semi-infinite 1D hexagonal piezoelectric quasicrystalline spaces \(x_{3} >0\) and \(x_{3} <0\), with properties defined by Eqs. (1)–(3) for each material, is considered (a cross-section orthogonal to the axis \(x_{2}\) is shown in Fig. 1). We assume that the vector t is continuous across the whole bimaterial interface and the part \(L=\{(-\infty ,-b)\cup (b,\infty )\}\) of the interface \(-\propto< x_{1}<\propto \), \(x_{3}=0\) is mechanically and electrically bounded, i.e. the boundary conditions at the interface \(x_{3} =0\) are the following ones:

$$\begin{aligned}&{\mathbf{t}}^{(1)}(x_{1} ,0)={\mathbf{t}}^{(2)}(x_{1} ,0) \quad for \quad x_{1} \in (-\infty ,\infty ), \end{aligned}$$
(A.8)
$$\begin{aligned}&{\mathbf{V}}^{({\mathbf{1}})}(x_{1} ,0)={\mathbf{V}}^{(2)}(x_{1} ,0) \quad for\quad x_{1} \in L. \end{aligned}$$
(A.9)

In this case according to Eqs. (A.4), (A.5), the solution of Eqs. (6) can be written for each subdomain in the form

$$\begin{aligned}&{\mathbf{V}}^{(j)}(x_{1} ,x_{3} )={\mathbf{A}}^{(j)}\,{\mathbf{f}}^{(j)}(z) +{\bar{{\mathbf{A}}}}^{(j)}\,{\bar{{\mathbf{f}}}}^{(j)}(\bar{{z}}), \end{aligned}$$
(A.10)
$$\begin{aligned}&{\mathbf{t}}^{(j)}(x_{1} ,x_{3} )={\mathbf{B}}^{(j)}\,{\mathbf{f}'}^{(j)}(z) +{\bar{{\mathbf{B}}}}^{(j)}\,\bar{\mathbf{f}}'^{(j)}(\bar{{z}}), \end{aligned}$$
(A.11)

where \(j=1\) for \(x_{3}>0\) and \(j=2\) for \(x_{3}<0\); the vector functions \({\mathbf{f}}^{(1)}(z)\) and \({\mathbf{f}}^{(2)}(z)\) are analytic in the upper (\(x_{3}>0\)) and the lower (\(x_{3}<0\)) domains, respectively.

Equation (A.11) and the boundary condition (A.8) give

$$\begin{aligned} {\mathbf{B}}^{(1)}\,{\mathbf{f}'}^{(1)}(x_{1} )-{\bar{{\mathbf{B}}}}^{(2)} \,\bar{\mathbf{f}}'^{(2)}(x_{1})= {\mathbf{B}}^{(2)}\,\mathbf{f}'^{(2)} (x_{1} )-{\bar{{\mathbf{B}}}}^{(1)}\,\bar{\mathbf{f}}'^{(1)}(x_{1}) \ \hbox {for} \quad -\infty<x_{1} <\infty . \end{aligned}$$
(A.12)

The left-hand side of Eq. (A.12) is the boundary value of a function analytic in the domain \(x_{3}>0\) and the right-hand side of Eq. (A.12) is a boundary value of another function analytic in the domain \(x_{3}<0\). Equation (A.12) means that both functions can be analytically continued into the entire plane, i.e. they are equal for \(x_{3}>0\) and \(x_{3}<0\), respectively, to a function M(z) analytic in the whole plane. Taking into account that the phonon and phason stresses and the electric displacement are bounded at infinity one gets from Eq. (A.11) that \(\mathbf{M} ({z})|_{{z}\rightarrow \propto }=\mathbf{M} ^{(\mathbf 0 )} =\mathbf{const }\). But it means that \(\mathbf{M} ({z})=\mathbf{M} ^{(\mathbf 0 )}\) holds true in the whole plane. Thus from Eq. (A.12) it follows

$$\begin{aligned}&{\mathbf{B}}^{(1)}{\mathbf{f}}'^{(1)}\;(z)-{\bar{{\mathbf{B}}}}^{(2)}{\bar{{\mathbf{f}}}}'^{(2)} \;(\bar{{z}})=\mathbf{M} ^{(\mathbf 0 )}\ \hbox {for}\quad x_{3}> 0, \end{aligned}$$
(A.13)
$$\begin{aligned}&{\mathbf{B}}^{(2)}{\mathbf{f}}'^{(2)}\;(z)-{\bar{{\mathbf{B}}}}^{(1)}{\bar{{\mathbf{f}}}}'^{(1)} \;(\bar{{z}})=\mathbf{M} ^{(\mathbf 0 )}\ \hbox {for}\quad x_{3}< 0, \end{aligned}$$
(A.14)

where \(\mathbf{M} ^{(\mathbf 0 )}\) is an arbitrary constant vector. Assuming that the eigenvalues are distinct and taking into account that the matrices in Eqs. (A.13), (A.14) are non-singular [40], one obtains

$$\begin{aligned} {\bar{{\mathbf{f}}}}'^{(2)}\;(\bar{{z}})= & {} ({\bar{{\mathbf{B}}}}^{(2)})^{-1} {\mathbf{B}}^{(1)}{\mathbf{f}}'^{(1)}\;(z)-({\bar{{\mathbf{B}}}}^{(2)})^{-1} {\mathbf{M}}^{{\mathbf{(0)}}}\ \hbox {for}\quad x_{3}>0,\nonumber \\ {\bar{{\mathbf{f}}}}'^{(1)}\;(\bar{{z}})= & {} ({\bar{{\mathbf{B}}}}^{(1)})^{-1} {\mathbf{B}}^{(2)}{\mathbf{f}}'^{(2)}\;(z)-({\bar{{\mathbf{B}}}}^{(1)})^{-1} {\mathbf{M}}^{{\mathbf{(0)}}}\ \hbox {for} \quad x_{3}< 0. \end{aligned}$$
(A.15)

Since \({\mathbf{f}}'^{(1)}\;(z)\) and \({\mathbf{f}}'^{(2)}\;(z)\) are arbitrary functions, one can set \(\mathbf{M} ^{(\mathbf 0 )} =\mathbf 0 \), and Eq. (A.15) gets the form

$$\begin{aligned} {\bar{{\mathbf{f}}}}'^{(2)}\;(\bar{{z}})= & {} ({\bar{{\mathbf{B}}}}^{(2)})^{-1} {\mathbf{B}}^{(1)}{\mathbf{f}}'^{(1)}\;(z)\ \hbox {for}\quad x_{3}> 0,\nonumber \\ {\bar{{\mathbf{f}}}}'^{(1)}\;(\bar{{z}})= & {} ({\bar{{\mathbf{B}}}}^{(1)})^{-1} {\mathbf{B}}^{(2)}{\mathbf{f}}'^{(2)}\;(z)\ \hbox {for}\quad x_{3}< 0. \end{aligned}$$
(A.16)

Consider further the vector

$$\begin{aligned} \left\langle {\mathbf{V}'}(x_{1}) \right\rangle ={\mathbf{V}'}^{(1)}(x_{1} ,0)-{\mathbf{V}'}^{(2)}(x_{1} ,0) \end{aligned}$$
(A.17)

of the derivatives of the jumps of phonon and phason displacements and electric potential across the material interface. By using Eqs. (A.10) and (A.16), it can be written as

$$\begin{aligned} \langle \mathbf{V}'(x_{1})\rangle =\mathbf{Df}'^{(1)}(x_{1}) +\bar{\mathbf{D}}\bar{f}'^{(1)}(x_{1}), \end{aligned}$$
(A.18)

with the definition \({\mathbf{D}}={\mathbf{A}}^{(1)}-{\bar{{\mathbf{A}}}}^{(2)} ({\bar{{\mathbf{B}}}}^{(2)})^{-1}{\mathbf{B}}^{(1)}\).

    From Eq. (A.11), the vector \(\mathbf{t} ^{(1)}\) on the material interface can be written as

$$\begin{aligned} \mathbf{t}^{(1)}(x_{1}, 0)={\mathbf{B}}^{(1)}\,{\mathbf{f}'}^{(1)}(x_{1}) +{\bar{\mathbf{B}}}^{(1)}\,{\bar{\mathbf{f}}}'^{(1)}(x_{1}). \end{aligned}$$
(A.19)

Introducing the vector function \({\varvec{\upomega }}(z)\) by the formula

$$\begin{aligned} {\varvec{\upomega }}(z) =\left\{ \begin{array}{ll} \mathbf{D}\,\mathbf{N} (z) &{} \quad \hbox {for}\quad x_{3} >0 \\ -\bar{\mathbf{D}}\,\bar{\mathbf{N}}(z) &{} \quad \hbox {for}\quad x_{3} <0 \\ \end{array}\right. , \end{aligned}$$
(A.20)

with \({\mathbf{N}}(z)=[{f_{1}'^{(1)}(z),\,f_{2}'^{(1)}(z), \,f_{3}'^{(1)}(z),\,f_{4}'^{(1)}(z),f_{5}'^{(1)}(z)}]^{T}\), leads to the following expressions:

$$\begin{aligned} \langle \mathbf{V}'(x_{1})\rangle= & {} {\varvec{\upomega }}^{+} (x_{1})-{\varvec{\upomega }}^{-}(x_{1}), \end{aligned}$$
(A.21)
$$\begin{aligned} \mathbf{t}^{(1)}(x_{1}, 0)= & {} \mathbf{G}{\varvec{\upomega }}^{+} (x_{1})-\bar{\mathbf{G}}{\varvec{\upomega }}^{-}(x_{1}) \end{aligned}$$
(A.22)

where \({\mathbf{G}}={\mathbf{B}}^{(1)}{\mathbf{D}}^{-1}\) and \({\varvec{\upomega }}^{+} (x_{1} )={\varvec{\upomega }}(x_{1} +i0), {\varvec{\upomega }}^{-}(x_{1}) ={\varvec{\upomega }}(x_{1}-i0)\).

    Equations (A.21) and (A.22) can be used for the analysis of compositions of different semi-infinite 1D hexagonal piezoelectric quasicrystals with cracks at their interface.

Appendix 3: Constants of 1D piezoelectric QCs poling in the \(x_{3}\)-direction [28]

  Upper material Lower material
Phonon elastic \(c_{11} =150\), \(c_{12} =100\), \(c_{13} =90\) \(c_{11} =234.33\), \(c_{12} =57.41\), \(c_{13} =66.63\)
constants (GPa) \(c_{33} =130\), \(c_{44} =50\) \(c_{33} =232.22\), \(c_{44} =70.19\)
Phason elastic constants (GPa) \(K_{1} =0.18\), \(K_{2} =0.3\) \(K_{1} =122\), \(K_{2} =24\)
Coupling constants (GPa) \(R_{1} =-1.50\), \(R_{2} =1.20\), \(R_{3} =1.20\) \(R_{1} =R_{2} =R_{3} =0.8846\)
Piezoelectric constants \(e_{31} =\tilde{{e}}_{15} =-0.160\), \(e_{33} =0.347\), \(e_{31} =-4.4\), \(e_{33} =18.6\), \(e_{15} =11.6\)
(C m\(^{-2}\)) \(e_{15} =-0.138\), \(\tilde{{e}}_{33} =0.350\) \(\tilde{{e}}_{15} =1.16\), \(\tilde{{e}}_{33} =1.86\)
Dielectric constants (\(10^{-9}\) C\(^{2}\) N\(^{-1}\) m\(^{-2}\)) \(\xi _{11} =0.0826\), \(\xi _{33} =0.0903\) \(\xi _{11} =5\), \(\xi _{33} =10\)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loboda, V., Komarov, O., Bilyi, D. et al. An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal. Acta Mech (2020). https://doi.org/10.1007/s00707-020-02721-8

Download citation