Set theoretical variants of the teaching–learning-based optimization algorithm for optimal design of truss structures with multiple frequency constraints

Abstract

In this paper, a set theoretical framework is proposed for the population-based metaheuristic algorithms. Using the proposed framework, two new set theoretical variants of the teaching–learning-based optimization (TLBO) algorithm are developed. These algorithms are named as OST-TLBO and STMP-TLBO, which are acronyms for the “ordered set theoretical teaching–learning-based optimization” and “set theoretical multi-phase teaching–learning-based optimization”, respectively. The present framework can be applied to other population-based metaheuristic algorithms. In order to verify the stability and robustness of the presented algorithms, some optimization problems are examined. These problems include four truss optimization problems with multiple natural frequency constraints. Comparing the results obtained from the proposed algorithms with those of the standard version of the TLBO algorithm shows that the proposed set theoretical framework improves the performance of the standard TLBO in terms of robustness and convergence characteristics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

References

  1. 1.

    Jain, P.K., Ahuja, O.P.: Functional Analysis, 2nd edn. New Academic Science, London (2010)

    Google Scholar 

  2. 2.

    Cantor, G.: Contributions to the Founding of the Theory of Transfinite Numbers. Open Court Publishing, Chicago (1915)

    Google Scholar 

  3. 3.

    Kenneth, K.: Set Theory: An Introduction to Independence Proofs, 1st edn. North-Holland, Amsterdam (1983)

    Google Scholar 

  4. 4.

    Behravesh, A., Kaveh, A., Sabet, S., Nani, M.: A set theoretical approach for configuration generation. Comput. Struct. 30, 1293–302 (1988)

    Article  Google Scholar 

  5. 5.

    Kaveh, A.: Structural Mechanics: Graph and Matrix Methods, 3rd edn. Research Studies Press (John Wiley), Baldock, Hertfordshire (2004)

    Google Scholar 

  6. 6.

    Kaveh, A., Biabani Hamedani, K., Zaerreza, A.: A set theoretical shuffled shepherd optimization algorithm for optimal design of cantilever retaining wall structures. Eng. Comput. 1–18, (2020). https://doi.org/10.1007/s00366-020-00999-9

  7. 7.

    Descamps, B., Filomeno, C.R.: Graph Theory in Evolutionary Truss Design Optimization. In: Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H. (eds.) Metaheuristic Applications in Structures and Infrastructures, pp. 241–68. Elsevier, London (2013)

    Google Scholar 

  8. 8.

    Kaveh, A., Bakhshpoori, T.: Metaheuristics: Outlines, MATLAB Codes and Examples, 1st edn. Springer, Basel (2019)

    Google Scholar 

  9. 9.

    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43, 303–15 (2011)

    Article  Google Scholar 

  10. 10.

    Kaveh, A., Zolghadr, A.: Optimal design of cyclically symmetric trusses with frequency constraints using cyclical parthenogenesis algorithms. Adv. Struct. Eng. 21(5), 739–55 (2018)

    Article  Google Scholar 

  11. 11.

    Grandhi, R.: Structural optimization with frequency constraints—a review. AIAA J. 31(12), 2296–303 (1993)

    Article  Google Scholar 

  12. 12.

    Bellagamba, L., Yang, T.Y.: Minimum-mass truss structures with constraints on fundamental natural frequency. AIAA J. 19(11), 1452–8 (1981)

    Article  Google Scholar 

  13. 13.

    Grandhi, R., Venkayyat, V.B.: Structural optimization with frequency constraints. AIAA J. 26(7), 858–66 (1988)

    Article  Google Scholar 

  14. 14.

    Tong, W.H., Liu, G.R.: An optimization procedure for truss structures with discrete design variables and dynamic constraints. Comput. Struct. 79(2), 155–62 (2001)

    Article  Google Scholar 

  15. 15.

    Sedaghati, R., Suleman, A., Tabarrok, B.: Structural optimization with frequency constraints using the finite element force method. AIAA J. 40(2), 382–8 (2002)

    Article  Google Scholar 

  16. 16.

    Lingyun, W., Mei, Z., Guangming, W., Guang, M.: Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. Comput. Mech. 35(5), 361–8 (2005)

    Article  Google Scholar 

  17. 17.

    Gomez, H.M.: Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst. Appl. 38, 957–68 (2011)

    Article  Google Scholar 

  18. 18.

    Miguel, L.F.F., Fadel Miguel, L.F.: Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst. Appl. 39, 9458–67 (2012)

    Article  Google Scholar 

  19. 19.

    Kaveh, A., Javadi, S.M.: Shape and size optimization of trusses with multiple frequency constraints using harmony search and ray optimizer for enhancing the particle swarm optimization algorithm. Acta Mech. 225(6), 1595–605 (2014)

    Article  Google Scholar 

  20. 20.

    Kaveh, A., Ilchi Ghazaan M.: Layout and size optimization of trusses with natural frequency constraints using improved ray optimization algorithm. IJST Trans. Civ. Eng. 39(C2+), 395–408 (2015)

  21. 21.

    Kaveh, A., Ilchi Ghazaan M.: Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints. Acta Mech. 228(1), 307–22 (2017)

  22. 22.

    Kaveh, A., Zolghadr, A.: Cyclical parthenogenesis algorithm for layout optimization of truss structures with frequency constraints. Eng. Optim. 49(8), 1317–34 (2017)

    Article  Google Scholar 

  23. 23.

    Kaveh, A., Zolghadr, A.: Meta-heuristic methods for optimization of truss structures with vibration frequency constraints. Acta Mech. 229(10), 3971–92 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kaveh, A., Biabani Hamedani, K., Barzinpour, F.: Optimal size and geometry design of truss structures utilizing seven meta-heuristic algorithms: a comparative study. Int. J. Optim. Civ. Eng. 10(2), 231–60 (2020)

    Google Scholar 

  25. 25.

    Halmos, P.R.: Naive Set Theory, 1st edn. Springer, New York (1974)

    Google Scholar 

  26. 26.

    Kaveh, A., Javadi, S.M.: Chaos-based firefly algorithms for optimization of cyclically large-size braced steel domes with multiple frequency constraints. Comput. Struct. 214, 28–39 (2019)

    Article  Google Scholar 

  27. 27.

    Kaveh, A., Ilchi Ghazaan M.: Meta-Heuristics Algorithms for Optimal Design of Real-Size Structures, 1st edn. Springer, Basel (2018)

  28. 28.

    Talbi, E.G.: Metaheuristics: From Design to Implementation, 1st edn. Wiley, New York (2009)

    Google Scholar 

  29. 29.

    Wang, D., Zhang, W.H., Jiang, J.S.: Truss optimization on shape and sizing with frequency constraints. AIAA J. 42(3), 622–30 (2004)

    Article  Google Scholar 

  30. 30.

    Lin, J.H., Che, W.Y., Yu, Y.S.: Structural optimization on geometrical configuration and element sizing with statical and dynamical constraints. Comput. Struct. 15(5), 507–515 (1982)

    Article  Google Scholar 

  31. 31.

    Kaveh, A., Ilchi Ghazaan M.: Hybridized optimization algorithms for design of trusses with multiple natural frequency constraints. Adv. Eng. Softw. 79, 137–47 (2015)

  32. 32.

    Taheri, S.H.S., Jalili, S.: Enhanced biogeography-based optimization: a new method for size and shape optimization of truss structures with natural frequency constraints. Lat. Am. J. Solids Struct. 13(7), 1406–30 (2016)

    Article  Google Scholar 

  33. 33.

    Dede, T., Grzywinski, M., Rao, R.V.: Jaya: A new meta-heuristic algorithm for the optimization of braced dome structures. In: Rao, R.V., Taler, J. (eds.) Advanced Engineering Optimization Through Intelligent Techniques. Advances in Intelligent Systems and Computing, vol. 949. Springer, Singapore (2020)

    Google Scholar 

  34. 34.

    Kaveh, A., Ilchi Ghazaan, M.: Enhanced colliding bodies algorithm for truss optimization with frequency constraints. J. Comput. Civ. Eng. 29(6), 040141041-11 (2015)

  35. 35.

    Kaveh, A., Ilchi Ghazaan, M.: Truss optimization with dynamic constraints using UECBO. Adv. Comput. Des. 1(2), 119–38 (2016)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Kaveh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Hamedani, K.B. & Kamalinejad, M. Set theoretical variants of the teaching–learning-based optimization algorithm for optimal design of truss structures with multiple frequency constraints. Acta Mech (2020). https://doi.org/10.1007/s00707-020-02718-3

Download citation