Atomistic simulation of tensile strength properties of graphene with complex vacancy and topological defects

Abstract

Defects including topological and vacancy defects have been observed in graphene during fabrication. Defects are also introduced to break the lattice symmetry of graphene and thereby obtain enhanced optoelectronic and other properties. It is important that gains in certain properties due to the presence defects are not at the expense of mechanical strength which is important in handling graphene and device fabrication. This paper presents a comprehensive study of the tensile strength and fracture strain of monolayer graphene with commonly observed topological defects and nanopores. Both molecular dynamics and the atomic-scale finite element method (AFEM) are used in this study, and the accuracy of AFEM in simulating complex topological and vacancy defects including line defects is established. It is found that the tensile strength properties have a complex dependency on the defect shape, size, and chirality. Certain defect geometries are found to be mechanically superior to other defect geometries thereby supporting the concept of topological design of graphene to optimize properties. The study also establishes AFEM as an efficient and potential tool for topological optimization of the mechanical behaviour of graphene.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(80), 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  2. 2.

    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–10 (2009). https://doi.org/10.1038/nature07719

    Article  Google Scholar 

  3. 3.

    Chen, B.C., Hone, J.: Graphene Nanoelectromechanical Systems. Proc. IEEE. 101, (2013)

  4. 4.

    Hu, Y., Shenderova, O.A., Hu, Z., Padgett, C.W., Brenner, D.W.: Carbon nanostructures for advanced composites. Rep. Prog. Phys. 69, 1847–1895 (2006). https://doi.org/10.1088/0034-4885/69/6/R05

    Article  Google Scholar 

  5. 5.

    Fürst, J.A., Pedersen, J.G., Flindt, C., Mortensen, N.A., Brandbyge, M., Pedersen, T.G., Jauho, A.P.: Electronic properties of graphene antidot lattices. New J. Phys. 11, 095020 (2009). https://doi.org/10.1088/1367-2630/11/9/095020

    Article  Google Scholar 

  6. 6.

    Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S., Mahurin, S.M.: Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015). https://doi.org/10.1038/nnano.2015.37

    Article  Google Scholar 

  7. 7.

    Yuan, W., Chen, J., Shi, G.: Nanoporous graphene materials. Mater. Today 17, 77–85 (2014). https://doi.org/10.1016/j.mattod.2014.01.021

    Article  Google Scholar 

  8. 8.

    Stone, A.J., Wales, D.J.: Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)

    Article  Google Scholar 

  9. 9.

    Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I.I., Batzill, M.: An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326–329 (2010). https://doi.org/10.1038/nnano.2010.53

    Article  Google Scholar 

  10. 10.

    Zhang, J., Zhao, J., Lu, J.: Intrinsic Strength and Failure Behaviors of Graphene Grain Boundaries. ACS Nano 6, 2704–2711 (2012). https://doi.org/10.1021/nn3001356

    Article  Google Scholar 

  11. 11.

    Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5, 26–41 (2011). https://doi.org/10.1021/nn102598m

    Article  Google Scholar 

  12. 12.

    Rajasekaran, G., Narayanan, P., Parashar, A.: Effect of point and line defects on mechanical and thermal properties of graphene: a review. Crit. Rev. Solid State Mater. Sci. 41, 47–71 (2016). https://doi.org/10.1080/10408436.2015.1068160

    Article  Google Scholar 

  13. 13.

    Kotakoski, J., Krasheninnikov, A.V., Kaiser, U., Meyer, J.C.: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 1–4 (2011). https://doi.org/10.1103/PhysRevLett.106.105505

    Article  Google Scholar 

  14. 14.

    Botello-Méndez, A.R., Declerck, X., Terrones, M., Terrones, H., Charlier, J.C.: One-dimensional extended lines of divacancy defects in graphene. Nanoscale 3, 2868–2872 (2011). https://doi.org/10.1039/c0nr00820f

    Article  Google Scholar 

  15. 15.

    de Souza, F.A.L., Amorim, R.G., Prasongkit, J., Scopel, W.L., Scheicher, R.H., Rocha, A.R.: Topological line defects in graphene for applications in gas sensing. Carbon N. Y. 129, 803–808 (2018). https://doi.org/10.1016/j.carbon.2017.11.029

    Article  Google Scholar 

  16. 16.

    Vicarelli, L., Heerema, S.J., Dekker, C., Zandbergen, H.W.: Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano 9, 3428–3435 (2015). https://doi.org/10.1021/acsnano.5b01762

    Article  Google Scholar 

  17. 17.

    Ansari, R., Ajori, S., Motevalli, B.: Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct. 51, 274–289 (2012). https://doi.org/10.1016/j.spmi.2011.11.019

    Article  Google Scholar 

  18. 18.

    Malakouti, M., Montazeri, A.: Nanomechanics analysis of perfect and defected graphene sheets via a novel atomic-scale finite element method. Superlattices Microstruct. 94, 1–12 (2016). https://doi.org/10.1016/j.spmi.2016.03.049

    Article  Google Scholar 

  19. 19.

    Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. 81, 081010 (2014). https://doi.org/10.1115/1.4027681

    Article  Google Scholar 

  20. 20.

    Liu, Y., Chen, X.: Mechanical properties of nanoporous graphene membrane. J. Appl. Phys. 115, (2014). https://doi.org/10.1063/1.4862312

  21. 21.

    Lee, H.L., Wang, S.W., Yang, Y.C., Chang, W.J.: Effect of porosity on the mechanical properties of a nanoporous graphene membrane using the atomic-scale finite element method. Acta Mech. 228, 2623–2629 (2017). https://doi.org/10.1007/s00707-017-1855-y

    Article  Google Scholar 

  22. 22.

    Jing, N., Xue, Q., Ling, C., Shan, M., Zhang, T., Zhou, X., Jiao, Z.: Effect of defects on Young’s modulus of graphene sheets: a molecular dynamics simulation. RSC Adv. 2, 9124–9129 (2012). https://doi.org/10.1039/c2ra21228e

    Article  Google Scholar 

  23. 23.

    Wang, S.P., Guo, J.G., Zhou, L.J.: Influence of Stone-Wales defects on elastic properties of graphene nanofilms. Phys. E. 48, 29–35 (2013). https://doi.org/10.1016/j.physe.2012.11.002

    Article  Google Scholar 

  24. 24.

    Wang, M.C., Yan, C., Ma, L., Hu, N., Chen, M.W.: Effect of defects on fracture strength of graphene sheets. Comput. Mater. Sci. 54, 236–239 (2012). https://doi.org/10.1016/j.commatsci.2011.10.032

    Article  Google Scholar 

  25. 25.

    He, L., Guo, S., Lei, J., Sha, Z., Liu, Z.: The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets: a molecular dynamics study. Carbon N. Y. 75, 124–132 (2014). https://doi.org/10.1016/j.carbon.2014.03.044

    Article  Google Scholar 

  26. 26.

    Wang, S., Yang, B., Yuan, J., Si, Y., Chen, H.: Large-scale molecular simulations on the mechanical response and failure behavior of a defective graphene: cases of 5–8-5 defects. Sci. Rep. 5, 1–9 (2015). https://doi.org/10.1038/srep14957

    Article  Google Scholar 

  27. 27.

    Liu, B., Huang, Y., Jiang, H., Qu, S., Hwang, K.C.: The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849–1864 (2004). https://doi.org/10.1016/j.cma.2003.12.037

    Article  MATH  Google Scholar 

  28. 28.

    Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.F., Hwang, K.C.: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B. 72, 035435 (2005). https://doi.org/10.1103/PhysRevB.72.035435

    Article  Google Scholar 

  29. 29.

    Cecchi, M.M., Rispoli, V., Venturin, M.: An atomic-scale finite element method for single-walled carbon nanotubes. Appl. Ind. Math. Italy III. 449–460, (2009). https://doi.org/10.1142/9789814280303_0040

  30. 30.

    Damasceno, D.A., Mesquita, E., Rajapakse, R.K.N.D., Pavanello, R.: Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons. Int. J. Mech. Mater. Des. 1–13, (2018). https://doi.org/10.1007/s10999-018-9403-z

  31. 31.

    Gajbhiye, S.O., Singh, S.P.: Multiscale nonlinear frequency response analysis of single-layered graphene sheet under impulse and harmonic excitation using the atomistic finite element method. J. Phys. D Appl. Phys. 48, 145305 (2015). https://doi.org/10.1088/0022-3727/48/14/145305

    Article  Google Scholar 

  32. 32.

    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order ( REBO ) potential energy expression for hydrocarbons. Mater. Sci. 14, 783–802 (2002). https://doi.org/10.1088/0953-8984/14/4/312

    Article  Google Scholar 

  33. 33.

    Zhang, T., Li, X., Gao, H.: Fracture of graphene: a review. Int. J. Fract. 196, 1–31 (2015). https://doi.org/10.1007/s10704-015-0039-9

    Article  Google Scholar 

  34. 34.

    Plimton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  Google Scholar 

  35. 35.

    Kim, N.H.: Introduction to nonlinear finite element analysis. (2015)

  36. 36.

    Dewapriya, M.A.N.: Molecular Dynamics Study of Effects of Geometric Defects on the Mechanical Properties of Graphene. Master’s thesis, University of British Columbia (2012)

  37. 37.

    Cao, G.: Atomistic studies of mechanical properties of graphene. Polymers (Basel). 6, 2404–2432 (2014). https://doi.org/10.3390/polym6092404

    Article  Google Scholar 

  38. 38.

    Rajasekaran, G., Parashar, A.: Molecular dynamics study on the mechanical response and failure behaviour of graphene: performance enhancement via 5–7-7-5 defects. RSC Adv. 6, 26361–26373 (2016). https://doi.org/10.1039/c6ra01762b

    Article  Google Scholar 

  39. 39.

    Li, M., Deng, T., Zheng, B., Zhang, Y., Liao, Y., Zhou, H.: Effect of defects on the mechanical and thermal properties of graphene. Nanomaterials. 9, 347 (2019). https://doi.org/10.3390/nano9030347

    Article  Google Scholar 

  40. 40.

    Fan, N., Ren, Z., Jing, G., Guo, J., Peng, B., Jiang, H.: Numerical investigation of the fracture mechanism of defective graphene sheets. Materials (Basel). 10, 1–12 (2017). https://doi.org/10.3390/ma10020164

    Article  Google Scholar 

  41. 41.

    Kochnev, A.S., Ovid’ko, I.A., Semenov, B.N.: Tensile strength of graphene containing 5-8-5 defects. Rev. Adv. Mater. Sci. 37, 105–110 (2014)

    Google Scholar 

  42. 42.

    Stehr, J., Buyanova, I., Chen, W.: Defects in Advanced Electronic Materials and Novel Low Dimensional Structures. Woodhead Publishing; 1 edn (2018)

  43. 43.

    Berger, D., Ratsch, C.: Line defects in graphene: How doping affects the electronic and mechanical properties. Phys. Rev. B. 93, 235441 (2016). https://doi.org/10.1103/PhysRevB.93.235441

    Article  Google Scholar 

  44. 44.

    Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  45. 45.

    Wang, Y., Liu, Z.: Spontaneous rolling-up and assembly of graphene designed by using defects. Nanoscale. 10, 6487–6495 (2018). https://doi.org/10.1039/c8nr00286j

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Natural Sciences and Engineering Research Council of Canada and São Paulo Research Foundation (Fapesp) funding for CEPID Process 2013/08293-7.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. K. N. D. Rajapakse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damasceno, D.A., Rajapakse, R.K.N.D., Mesquita, E. et al. Atomistic simulation of tensile strength properties of graphene with complex vacancy and topological defects. Acta Mech (2020). https://doi.org/10.1007/s00707-020-02715-6

Download citation