Mechanics of kerf patterns for creating freeform structures

Abstract

A relief cutting method, or kerfing, is considered to create flexible freeform surfaces from relatively stiff and thick panels. The flexibility and moldability are achieved by introducing slender components within the panel, forming kerf patterns, and hence reducing the second moment and polar moment of an area of the solid panel. This paper presents a systematic study on the deformations of kerf unit-cells and of kerf panels. Two different kerf patterns, i.e., square and hexagon, with various cut densities are studied. The effects of different cutting density and kerf patterns on the stretching, bending, and twisting deformations are examined. Understanding the influence of kerf patterns and cut densities on various deformation mechanisms will guide the design of freeform complex shapes out of kerf panels. Experimental tests were performed on unit-cells under different boundary conditions, e.g., uniaxial and biaxial stretching and bending. The tests were also performed on kerf panels with different kerf patterns and varying cut densities. We used a nonlinear beam element in order to describe the deformations of the slender components within the kerf patterns. We compared the overall deformations in the kerf unit-cells and panels from the beam element model and experimental tests. Using the kerfing technique allows for generating flexible structures with complex geometries from mass-produced panels of standard shape and size. When using the kerfing method to achieve the desired surface topology, the stresses, strains, and displacements in the surface will depend on the kerf pattern, cut density, and constituent behavior.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Andrade, D., Harada, M., Shimada, K.: Framework for automatic generation of facades on free-form surfaces. Front. Archit. Res. 6, 273–289 (2017)

    Article  Google Scholar 

  2. 2.

    Cai, Y.C., Atluri, S.N.: Large rotation analyses of plate/shell structures based on the primal variational principle and a fully nonlinear theory in the updated Lagrangian co-rotational reference frame. CMES: Comput. Model. Eng. Sci. 83, 249–273 (2012)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Cesarek, P., Saje, M., Zupan, D.: Kinematically exact curved and twisted strain-based beam. Int. J. Solids Struct. 49, 1802–1817 (2012)

    Article  Google Scholar 

  4. 4.

    Chen, R., Jiang, M., Kalantar, N., Moreno, M., Muliana, A.: “Creating flexible structures out of MDF Plates” 33rd ASC Technical Conference, University of Washington (Sept 2018)

  5. 5.

    Crisfield, A., Moita, G.F.: A unified co-rotational framework for solids, shells and beams. Int. J. Solid Struct. 33, 2969–2992 (1996)

    Article  Google Scholar 

  6. 6.

    Greenberg, E., Korner, A.: Substractive manufacturing for variable-stiffness plywood composite structures. Sustain. Des. Manuf. sdm14–036, 50–66 (2014)

    Google Scholar 

  7. 7.

    Guseinov, R., McMahan, C., Perez, J., Daraio, C., Bickel, B.: Programming temporal morphing of self-actuated shells. Nat. Commun. 11, 237 (2020)

    Article  Google Scholar 

  8. 8.

    Guzelci, O.Z., Alacam, S., Bacinoglu, S.Z.: Three-step experimentation on embedding curvature to rigid planar materials through cut patterns. Gestão e Tecnol. de Proj. São Carlos 12(3), 93–107 (2017). https://doi.org/10.11606/gtp.v12i3.134543

    Article  Google Scholar 

  9. 9.

    Hoffer, B., Kahan, G., Crain, T., Miranowski, D.: Kerf Pavilion (2012). https://architecture.mit.edu/architecture-and-urbanism/project/kerf-pavilion

  10. 10.

    Ivanis̆ević, D.: Super flexible laser cut plywood (2014). http://lab.kofaktor.hr/en/portfolio/super-flexible-laser-cut-plywood

  11. 11.

    Irschik, H., Gerstmayr, J.: A continuum mechanics based derivation of Rreissner’s large displacement finite strain beam theory: the case of plane deformations of originally straight Bernoulli-Euler beams. Acta Mech. 206, 1–21 (2009)

    Article  Google Scholar 

  12. 12.

    Kalantar, N., Borhani, A.: Informing deformable formworks, parameterizing deformation behavior of a non-stretchable membrane via kerfing. In: Learning, Prototyping and Adapting—Proceedings of the 23rd CAADRIA Conference—Volume 2, Tsinghua University, Beijing, China, 17–19 May 2018, pp. 339–348 (2018)

  13. 13.

    Kang, L., Zhang, Q.L., Wang, Q.L.: Linear and geometrically nonlinear analysis of novel flat shell elements with rotational degrees of freedom. Finite Elem. Anal. Des 45, 386–392 (2009)

    Article  Google Scholar 

  14. 14.

    Konakovic-Lukovic, M., Panetta, J., Crane, K., Pauly, M.: Rapid deployment of curved surfaces via programmable auxetics. ACM Trans. Gr. 37, 106 (2018)

    Article  Google Scholar 

  15. 15.

    Muliana, A.H.: Large deformations of nonlinear viscoelastic and multi-responsive beams. Int. J. Nonlinear Mech. 71, 152–164 (2015)

    Article  Google Scholar 

  16. 16.

    Postle, B.: Methods for creating curved shell structures from sheet materials. Buildings 2, 424–455 (2012)

    Article  Google Scholar 

  17. 17.

    Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Gr. 26(65), 1–11 (2007)

    Google Scholar 

  18. 18.

    Reissner, E.: On one-dimensional finite strain beam theory. J. Appl. Math. Phys (ZAMP) 23, 795–804 (1972)

    Article  Google Scholar 

  19. 19.

    Saje, M., Srpcic, S.: Large deformations of in-plane beam. Int. J. Solids Struct. 21, 1181–1195 (1985)

    Article  Google Scholar 

  20. 20.

    Simo, J.C.: A finite strain beam formulation. the three-dimensional dynamic problem part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1984)

    Article  Google Scholar 

  21. 21.

    Sliseris, J., Andra, H., Kabel, M., Dix, B., Plinke, B.: Virtual characterization of MDF fiber network. Eur. J. Wood Prod. 75, 397–407 (2017)

    Article  Google Scholar 

  22. 22.

    Sohrabi, A., Muliana, A., Srinivasa, A.: Controlling deformation in electro-active truss structures with nonlinear history-dependent response. Finite Elem. Anal. Des. 129, 42–52 (2017)

    Article  Google Scholar 

  23. 23.

    Tajeddini, V., Muliana, A.: Deformation of flexible and foldable electro-active composite structures. Compos. Struct. 160, 280–291 (2017)

    Article  Google Scholar 

  24. 24.

    Zarrinmehr, S., Ettehad, M., Kalantar, N., Borhani, A., Sueda, S., Akleman, E.: Interlocked archimedean spirals for conversion of planar rigid panels into locally flexible panels with stiffness control. Comput. Gr. 66, 93–102 (2017)

    Article  Google Scholar 

  25. 25.

    Zehnder, J., Knoop, E., Bacher, M., Thomaszewski, B.: Metasilicone: design and fabrication of composite silicone with desired mechanical properties. ACM Trans. Gr. 36, 240 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the National Science Foundation under Grant CMMI 1912823.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anastasia Muliana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Turman, C., Jiang, M. et al. Mechanics of kerf patterns for creating freeform structures. Acta Mech (2020). https://doi.org/10.1007/s00707-020-02713-8

Download citation