Skip to main content
Log in

Variable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The availability of accurate methods to mathematically model and predict the behavior of viscoelastic structures under mechanical, thermal and other loads remains a critical issue in different fields ranging from construction engineering to aerospace. Methods to calculate elastic structures are well developed; however, considering that viscoelastic properties require significant effort, we have developed and tested a new analytical method to solve boundary problems of isotropic linearly viscoelastic bodies. According to the proposed algorithm, to find the solution for a linear viscoelasticity boundary problem, we must replace the elastic constants with some functions of time and then numerically or analytically calculate the stress–strain state of the structure at any moment of its loading history. As a result of the theoretical justification of the proposed method, carried out in three independent ways, identical expressions of effective modules are obtained. The obtained results, as well as testing on solutions to several problems, allow us to conclude that the new analytical method is applicable to the calculation of the stress–strain state of viscoelastic bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lakes, R.: Viscoelastic Materials. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  2. Zhu, Z., Jiang, C., Jiang, H.: Visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility. Acta Mech. (2019). https://doi.org/10.1007/s00707-019-02383-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Pavlov, M.S., Ponomarev, S.A., Maritsky, N.N.: Mathematical model of composite fibre-glass aramide-wired cord rheological properties. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4964582

    Article  Google Scholar 

  4. Tang, Y., Li, T., Ma, X.: Creep and recovery behavior analysis of space mesh structures. Acta Astronaut. (2016). https://doi.org/10.1016/j.actaastro.2016.08.003

    Article  Google Scholar 

  5. Kwok, K., Pellegrino, S.: Micromechanics models for viscoelastic plain-weave composite tape springs. AIAA J. (2017). https://doi.org/10.2514/1.J055041

    Article  Google Scholar 

  6. Maxwell, J.C.L.: On the dynamical theory of gases. Philos. Trans. (1867). https://doi.org/10.1098/rstl.1867.0004

    Article  Google Scholar 

  7. Boltzman, L.: Zur Theorie der Elastischen Nachwirkung. Wiener Berichte. (1874). https://doi.org/10.1098/rstl.1867.0004

    Article  MATH  Google Scholar 

  8. Volterra, V.: Lecons sur les fonctions de lignes. Gautierr Villars, Paris (1912)

    Google Scholar 

  9. Volterra, V.: Theory of Functionals and of Integral and Integrodifferential Equations. Blackie & Son Limited, London-Glasgow (1930)

    MATH  Google Scholar 

  10. Reddy, J.N.: An Introduction to Continuum Mechanics. Cambridge University Press, New York (2008)

    Google Scholar 

  11. Pipkin, A.C.: Lectures of Viscoelasticity Theory. Springer Verlag, New York (1986)

    Book  Google Scholar 

  12. Flugge, W.: Viscoelasticity. Blaisdell Press, New York (1967)

    MATH  Google Scholar 

  13. Cristensen R. M.: Theory of Viscoelasticity: An Introduction Academic, New York (1980)

  14. Taylor, R.L., Pister, K.S., Goudreas, G.L.: Thermochemical analysis of viscoelastic solids. Int. J. Numer. Methods Eng. (1970). https://doi.org/10.1002/nme.1620020106

    Article  Google Scholar 

  15. Simo, J.C.: On fully three-dimensional finite strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. (1987). https://doi.org/10.1016/0045-7825(87)90107-1

    Article  MATH  Google Scholar 

  16. Ataoglu, S.: A two dimensional mixed boundary—value problems in a viscoelastic medium. Struct. Eng. Mech. (2009). https://doi.org/10.12989/sem.2009.32.3.407

    Article  Google Scholar 

  17. Chazal, C., Pitti, R.M.: Integral approach for time dependent materials finite element method. J. Theor. Appl. Mech. 49(4), 1029–1048 (2011)

    Google Scholar 

  18. Janovsky, V., Shaw, S., Wardy, M.K., Whiteman, J.R.: Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. (1995). https://doi.org/10.1016/0377-0427(95)00059-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Lahellec, N.: Effective behavior of linear viscoelastic composites: a time integration approach. Int. J. Solids Struct. (2007). https://doi.org/10.1016/j.ijsolstr.2006.04.038

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, H.N., Nie, G.H.: Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plaue problem involving time—dependent boundary regions. Acta Mech. 210(3), 315–330 (2010)

    Article  MATH  Google Scholar 

  21. Matveenko, V.P., Smetannikov, OYu., Trufanov, N.A., Shardakov, I.N.: Constitutive relations for viscoelastic materials under thermorelaxation transition. Acta Mech. (2015). https://doi.org/10.1007/s00707-015-1313-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Schapery, R.A.: Analysis of viscoelastic composite materials. J. Compos. Mater. (1967). https://doi.org/10.1177/002199836700100302

    Article  Google Scholar 

  23. Haj-Ali, R., Muliana, A.: Numerical finite element formulation of the schapery non-linear viscoelastic material model. Int. J. Numer. Methods Eng. (2004). https://doi.org/10.1002/nme.861

    Article  MATH  Google Scholar 

  24. Tsukrov, I., Eroshkin, O., Pail, W., Celikkol, B.: Numerical modeling of nonlinear elastic components of mooring systems. IEEE J. Ocean Eng. (2005). https://doi.org/10.1109/JOE.2004.841396

    Article  Google Scholar 

  25. Pavlov, S.M., Svetashkov, A.A.: Iteration method for solving linear viscoelasticity problems. Russ. Phys. J. (1993). https://doi.org/10.1007/bf00570749

    Article  Google Scholar 

  26. Svetashkov, A., Kupriyanov, N., Manabaev, K.: Modification of the iterative method for solving linear viscoelasticity boundary value problems and its implementation by finite element method. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2129-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Carini, A., Gelfi, P., Marchina, E.: An energetic formulation for the linear viscoelastic problem. Part I: theoretical results and first calculations. Int. J. Numer. Methods Eng. 38(1), 37–62 (1995)

    Article  MATH  Google Scholar 

  28. Matveenko, V., Trufanov, N.: Multi-operator boundary value problems of viscoelasticity of piecewise—homogeneous bodies. J. Eng. Math. (2011). https://doi.org/10.1007/s10665-011-9496-y

    Article  MATH  Google Scholar 

  29. Efimov, A., Maliy, V.: Metod analiticheskogo prodolgeniya v zadachah lineynoy vyazkouprugosti stareyushih materialov. Izvestiya AN SSSR. Mehanika tverdogo tela 1, 5–13 (1974). (In Russian)

    Google Scholar 

  30. Matveenko, V., Troyanovsky, I., Caplina, G.: Postroenie resheniy zadach teorii uprugosti v vide ryadov po stepeni uprugih postoyannih I ih prilogeniya k vyazkouprugosti. Prikladnaya matematika i mehanika 60(4), 651–659 (1996). (In Russian)

    Google Scholar 

  31. Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Mech. Anal. 11(1), 291–356 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ciarlet, P.G.: Mathematical Elasticity. Vol. 1: Three-Dimensional Elasticity. North-Holland. Amsterdam, New York, Oxford, Tokyo (1988)

  33. Svetashkov, A.A.: Time-effective moduli of a linear viscoelastic body. Mech. Compos. Mater. (2000). https://doi.org/10.1007/bf02681774

    Article  Google Scholar 

  34. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. University Press, Cambridge (1935)

    Google Scholar 

  35. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity 3rd ed. McGraw-Hill, New York (1970)

  36. Rabotnov, YuN: Polzuchest elementov konstrukciy. Nauka, Moskow (1966). (In Russian)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Tomsk Polytechnic University CEP Grant Number DRIaP_75/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Svetashkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetashkov, A.A., Kupriyanov, N.A., Pavlov, M.S. et al. Variable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies. Acta Mech 231, 3583–3606 (2020). https://doi.org/10.1007/s00707-020-02698-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02698-4

Navigation