In-plane and out-of-plane tensile behaviour of single-layer graphene sheets: a new interatomic potential

Abstract

This paper compares simple interatomic potentials for carbon nanostructures with hexagonal lattice, by investigating the in-plane and the out-of-plane tensile behaviour of single-layer graphene sheets. Attention is given both to potentials already considered in the literature and to a new one, which we call the damped DREIDING potential, in which damping functions are added to the DREIDING potential. For each potential, a calibration of its parameters and a focus on its performance are carried out in the in-plane context, by comparison with ab initio results of the rigidities and of the tensile limit properties, under periodic conditions. In addition, the damped DREIDING potential is used to perform in-plane tensile tests on both pristine and perforated single-layer graphene sheets of finite size. In the out-of-plane context, the calibration from ab initio results is only possible with reference to the rigidity. For the damped DREIDING potential, a sensitivity analysis, applied to a nanoindentation problem, on a pristine single-layer graphene sheet of finite size is provided. In doing so, a narrow range of value of the force needed to remove an atom from a sheet is given.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    The Stillinger–Weber potential is the only potential in which the inner forces are not directly zero when \(r_{ij} = {\bar{r}}\).

  2. 2.

    The zigzag and armchair test nomenclature is borrowed from the tensile tests on the ribbons: by the term zigzag or armchair we mean the arrangement of the side on which the traction is applied.

  3. 3.

    This constraint is managed by condensation of one of the two variables.

References

  1. 1.

    Nguyen, B.H., Nguyen, V.H.: Promising applications of graphene and graphene-based nanostructures. Nanosci. Nanotechnol. 7, 023002 (2016)

    Google Scholar 

  2. 2.

    Sun, C., Wen, B., Bai, B.: Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull. 60, 1807–1823 (2015)

    Article  Google Scholar 

  3. 3.

    Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, 58 (2015)

    Article  Google Scholar 

  4. 4.

    Kumar, R., Singh, R., Hui, D., Feo, L., Fraternali, F.: Graphene as biomedical sensing element: state of art review and potential engineering applications. Compos. B Eng. 134, 193–206 (2018)

    Article  Google Scholar 

  5. 5.

    Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: \(C_2 \, F\), \(BN\), and \(C\) nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)

    Article  Google Scholar 

  6. 6.

    Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)

    Article  Google Scholar 

  7. 7.

    Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17, 864–870 (2006)

    Article  Google Scholar 

  8. 8.

    Zhang, Y.Y., Wang, C.M., Xiang, Y.: A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes. Carbon 48, 4100–4108 (2010)

    Article  Google Scholar 

  9. 9.

    Silvestre, N., Faria, B., Lopes, J.N.C.: A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes. Compos. Struct. 94, 1352–1358 (2012)

    Article  Google Scholar 

  10. 10.

    Gamboa, A., Vignoles, G.L., Leyssale, J.-M.: On the prediction of graphene’s elastic properties with reactive empirical bond order potential. Carbon 89, 176–187 (2015)

    Article  Google Scholar 

  11. 11.

    Berinskii, I.E., Borodich, F.M.: Elastic in-plane properties of 2D linearized models of graphene. Mech. Mater. 62, 60–68 (2013)

    Article  Google Scholar 

  12. 12.

    Favata, A., Micheletti, A., Podio-Guidugli, P.: A nonlinear theory of prestressed elastic stick-and-spring structures. Int. J. Eng. Sci. 80, 4–20 (2014)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V.: Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math. Mech. Solids 20, 836–870 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos. B Eng. 115, 316–329 (2017)

    Article  Google Scholar 

  15. 15.

    Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech. 229, 2343–2378 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: Force constants of BN, SiC, AlN and GaN sheets through discrete homogenization. Meccanica 53, 593–611 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Genoese, A., Genoese, A., Salerno, G.: Elastic constants of achiral single-wall CNTs: analytical expressions and a focus on size and small scale effects. Compos. B Eng. 147, 207–226 (2018)

    Article  Google Scholar 

  18. 18.

    Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: On the in-plane failure and post-failure behaviour of pristine and perforated single-layer graphene sheets. Math. Mech. Solids 24, 3418–3443 (2019)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech. 230, 1105–1128 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: Buckling analysis of single-layer graphene sheets using molecular mechanics. Front. Mater. 6, 26 (2019)

    Article  Google Scholar 

  21. 21.

    Georgantzinos, S.K., Giannopoulos, G.I., Anifantis, N.K.: Numerical investigation of elastic properties of graphene structures. Mater. Des. 31, 4646–4654 (2010)

    Article  Google Scholar 

  22. 22.

    Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Brett, C.A.M., Fernandes, J.V.: Mechanical characterization of single-walled carbon nanotubes: numerical simulation study. Compos. Part B Eng. 75, 73–85 (2015)

    Article  Google Scholar 

  23. 23.

    Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: On the molecular mechanics of single layer graphene sheets. Int. J. Eng. Sci. 133, 109–131 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys. Rev. B 69, 115415 (2004)

    Article  Google Scholar 

  25. 25.

    Cohen-Tanugi, D., Grossman, J.C.: Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012)

    Article  Google Scholar 

  26. 26.

    Hollerer, S.: Numerical validation of a concurrent atomistic-continuum multiscale method and its application to the buckling analysis of carbon nanotubes. Comput. Methods Appl. Mech. Eng. 270, 220–246 (2014)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Ghaffari, R., Duong, T.X., Sauer, R.A.: A new shell formulation for graphene structures based on existing ab-initio data. Int. J. Solids Struct. 135, 37–60 (2018)

    Article  Google Scholar 

  28. 28.

    Singh, S., Patel, B.P.: A computationally efficient multiscale finite element formulation for dynamic and postbuckling analyses of carbon nanotubes. Comput. Struct. 195, 126–144 (2018)

    Article  Google Scholar 

  29. 29.

    Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., et al.: DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010)

    Article  Google Scholar 

  30. 30.

    Jiang, D., Cooper, V.R., Dai, S.: Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009)

    Article  Google Scholar 

  31. 31.

    Cohen-Tanugi, D., Grossman, J.C.: Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014)

    Article  Google Scholar 

  32. 32.

    Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  Google Scholar 

  33. 33.

    Duan, W.H., Chang, T., Liew, K.M., He, X.Q.: Molecular mechanics modeling of carbon nanotube fracture. Carbon 11, 1769–1776 (2007)

    Article  Google Scholar 

  34. 34.

    Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985)

    Article  Google Scholar 

  35. 35.

    Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  36. 36.

    Mayo, S.L., Olafson, B.D., Goddard III, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)

    Article  Google Scholar 

  37. 37.

    Dyck, O., Kim, S., Kalinin, S.V., Jesse, S.: Placing single atoms in graphene with a scanning trasmission electron miscroscope. Appl. Phys. Lett. 111, 113104 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the University “Roma Tre” for cofunding the research contract of PhD Alessandra Genoese and to the Italian Ministry of University, Research and Education for cofunding the research contract of PhD Andrea Genoese.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alessandra Genoese.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Genoese, A., Genoese, A. & Salerno, G. In-plane and out-of-plane tensile behaviour of single-layer graphene sheets: a new interatomic potential. Acta Mech 231, 2915–2930 (2020). https://doi.org/10.1007/s00707-020-02680-0

Download citation