Skip to main content
Log in

A crack along a part of an interface electrode in a piezoelectric bimaterial under anti-plane mechanical and in-plane electric loadings

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An electrically conducting crack along a part of an electrode in the interface of a piezoelectric bimaterial under the action of anti-plane mechanical and in-plane electric loadings is analyzed. The electrode is assumed to be much thinner than the piezoelectric material, and therefore, its mechanical properties are neglected. Using special representations of field variables via sectionally analytic functions, a combined Dirichlet–Riemann boundary value problem is formulated and solved analytically. Explicit expressions for the shear stress, the electric field and the crack faces’ sliding displacement are derived. These quantities are also presented graphically along the corresponding parts of the material interface. The intensity factors for stress and electric field are determined as well. The dependencies of the mentioned values on the magnitude of the external electric loading and different ratios of the crack and electrode lengths are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, W., Meguid, S.A.: Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials. J. Appl. Mech. 65, 76–84 (1998)

    Article  Google Scholar 

  2. dos Santos e Lucato, S.L., Lupascu, D.C., Kamlah, M.R., Rödel, J., Lynch, C.S.: Constraint-induced crack initiation at electrode edges in piezoelectric ceramics. Acta Mater. 49, 2751–2759 (2001)

    Article  Google Scholar 

  3. Furuta, A., Uchino, K.: Dynamic observation of crack propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76, 1615–1617 (1993)

    Article  Google Scholar 

  4. Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: Interface cracks in piezoelectric materials. Smart Mater. Struct. 25, 023001 (2016)

    Article  Google Scholar 

  5. Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: An electrically permeable crack between two different piezoelectric materials. In: Wriggers, P., Eberhard, P. (eds.) Fracture mechanics of piezoelectric solids with interface cracks. Lecture Notes in Applied and Computational Mechanics, vol. 83, pp. 59–95. Springer (2017)

  6. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965)

    Google Scholar 

  7. Häusler, C., Balke, H.: Full form of the near tip field for the interface crack between a piezoelectric material and a thin electrode. Mater. Sci. Forum 492–493, 261–266 (2005)

    Article  Google Scholar 

  8. Häusler, C., Gao, C.F., Balke, H.: Collinear and periodic electrode–ceramic interfacial cracks in piezoelectric bimaterials. J. Appl. Mech. 71, 486–492 (2004)

    Article  MATH  Google Scholar 

  9. Lang, S.: Harmonic functions. In: Axler, S., Ribet, K. (eds.) Complex Analysis. Graduate Texts in Mathematics, vol. 103, pp. 241–290. Springer, New York (1999)

    Chapter  Google Scholar 

  10. Lapusta, Y., Onopriienko, O., Loboda, V.: An interface crack with partially electrically conductive crack faces under anti-plane mechanical and in-plane electric loadings. Mech. Res. Commun. 81, 38–43 (2017)

    Article  Google Scholar 

  11. Li, X.F., Duan, X.Y.: Electroelastic analysis of a piezoelectric layer with electrodes. Int. J. Fract. 111, L73–L78 (2001)

    Google Scholar 

  12. Li, X.F.: Electroelastic field induced by thin interface electrodes between two bonded dissimilar piezoelectric ceramics. Sci. China Ser. G Phys. Mech. Astron. 49, 526–539 (2006)

    Article  Google Scholar 

  13. Li, Y.D., Zhang, N., Lee, K.Y.: Effect of a finite interface on the electrode in a non-homogeneous piezoelectric structure. Smart Mater. Struct. 18, 125028 (2009)

    Article  Google Scholar 

  14. Loboda, V., Mahnken, R.: An investigation of an electrode at the interface of a piezoelectric bimaterial space under remote electromechanical loading. Acta Mech. 221, 327–339 (2011)

    Article  MATH  Google Scholar 

  15. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Groningen (1953a)

    MATH  Google Scholar 

  16. Muskhelisvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953b)

    Google Scholar 

  17. Nakhmein, E.L., Nuller, B.M.: The pressure of a system of stamps on an elastic half-plane under general conditions of contact adhesion and slip. J. Appl. Math. Mech. 52, 223–230 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Narita, F., Yoshida, M., Shindo, Y.: Electroelastic effect induced by electrode embedded at the interface of two piezoelectric half-planes. Mech. Mater. 36, 999–1006 (2004)

    Article  Google Scholar 

  19. Onopriienko, O., Loboda, V., Sheveleva, A., Lapusta, Y.: Interaction of a conductive crack and of an electrode at a piezoelectric bimaterial interface. C. R. Mec. 346, 449–459 (2018)

    Article  Google Scholar 

  20. Pak, Y.E.: Crack extension force in a piezoelectric material. J. Appl. Mech. 57, 647–653 (1990)

    Article  MATH  Google Scholar 

  21. Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)

    Article  Google Scholar 

  22. Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)

    Article  Google Scholar 

  23. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach, New York (1998)

    Google Scholar 

  24. Ru, C.Q.: Exact solution for finite electrode layers embedded at the interface of two piezoelectric half-planes. J. Mech. Phys. Solids 48, 693–708 (2000a)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ru, C.Q.: Electrode–ceramic interfacial cracks in piezoelectric multilayer materials. J. Appl. Mech. 67, 255–261 (2000b)

    Article  MATH  Google Scholar 

  26. Wang, B.L., Sun, Y.G., Han, J.C., Du, S.Y.: An interface electrode between two piezoelectric layers. Mech. Mater. 41, 1–11 (2009)

    Article  Google Scholar 

  27. Wang, X., Schiavone, P.: Debonded arc-shaped interface conducting rigid line inclusions in piezoelectric composites. C. R. Mec. 345, 724–731 (2017)

    Article  Google Scholar 

  28. Wang, X., Shen, Y.P.: Exact solution for mixed boundary value problems at anisotropic piezoelectric bimaterial interface and unification of various interface defects. Int. J. Solids Struct. 39, 1591–1619 (2002)

    Article  MATH  Google Scholar 

  29. Winzer, S.R., Shankar, N., Ritter, A.: Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 72, 2246–2257 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was executed during a stay of V. G. at Karlsruhe Institute of Technology (KIT). The authors gratefully acknowledge the support from KIT by funding the guest stay of V. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Govorukha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govorukha, V., Sheveleva, A. & Kamlah, M. A crack along a part of an interface electrode in a piezoelectric bimaterial under anti-plane mechanical and in-plane electric loadings. Acta Mech 230, 1999–2012 (2019). https://doi.org/10.1007/s00707-019-2364-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-2364-y

Navigation