Skip to main content
Log in

Realizing passive direction-bias for mechanical wave propagation using a nonlinear metamaterial

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The possibility of realizing amplitude-activated passive direction-bias in longitudinal elastic wave propagation using a nonlinear acoustic metamaterial is demonstrated. Applying the method of multiple scales, approximate analytical solutions are derived for the dispersion curve and bandgap shifts due to the presence of nonlinear hardening local oscillators within the metamaterial using its lumped parameter effective-mass model. The configuration for a structural waveguide consisting of a tuned combination of a nonlinear and a linear acoustic metamaterial that takes advantage of these shifts to produce amplitude-activated direction-bias in propagation was postulated and verified using discrete element simulations. A numerical routine to generate root profile geometries that enable contact-based hardening response in tip-loaded cantilever beam resonators was developed and implemented. Utilizing a hybrid fabrication process involving additively manufactured and machined components, a prototype test article was constructed. Experiments using a structural waveguide test rig verify the existence and extent of bandgaps and provide evidence for the passive direction-bias phenomenon. Follow-on investigations on configurations with different types of nonlinearities could pave the way for development of additional passive acoustic wave manipulation devices with enriched dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  Google Scholar 

  2. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  3. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  4. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)

    Article  Google Scholar 

  5. Sukhovich, A., Merheb, B., Muralidharan, K., Vasseur, J.O., Pennec, Y., Deymier, P.A., et al.: Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys. Rev. Lett. 102, 154301 (2009)

    Article  Google Scholar 

  6. Sanchis, L., García-Chocano, V.M., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F., et al.: Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 110, 124301 (2013)

    Article  Google Scholar 

  7. Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., Pagneux, V.: Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016)

    Article  Google Scholar 

  8. Ma, G., Yang, M., Xiao, S., Yang, Z., Sheng, P.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014)

    Article  Google Scholar 

  9. Viktor, G.V.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Phys. Uspekhi 10, 509 (1968)

    Article  Google Scholar 

  10. Lakes, R.S., Lee, T., Bersie, A., Wang, Y.C.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)

    Article  Google Scholar 

  11. Manimala, J.M., Huang, H.H., Sun, C.T., Snyder, R., Bland, S.: Dynamic load mitigation using negative effective mass structures. Eng. Struct. 80, 458–468 (2014)

    Article  Google Scholar 

  12. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. Lond. A 463, 855–880 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, H.H., Sun, C.T.: Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. J. Acoust. Soc. Am. 132, 2887–2895 (2012)

    Article  Google Scholar 

  14. Huang, H.H., Sun, C.T.: Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young’s modulus. J. Mech. Phys. Solids 59, 2070–2081 (2011)

    Article  MATH  Google Scholar 

  15. Vincent, J.H.: LX. On the construction of a mechanical model to illustrate Helmholtz’s theory of dispersion. Philos. Mag. 46, 557–563 (1898)

    Article  MATH  Google Scholar 

  16. Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)

    Article  Google Scholar 

  17. Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G., Kim, C.K.: Acoustic metamaterial with negative density. Phys. Lett. A 373, 4464–4469 (2009)

    Article  Google Scholar 

  18. Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G., Kim, C.K.: Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010)

    Article  Google Scholar 

  19. Liu, Z., Chan, C.T., Sheng, P., Goertzen, A.L., Page, J.H.: Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys. Rev. B 62, 2446–2457 (2000)

    Article  Google Scholar 

  20. Sheng, P., Zhang, X.X., Liu, Z., Chan, C.T.: Locally resonant sonic materials. Physica B 338, 201–205 (2003)

    Article  Google Scholar 

  21. Manimala, J.M., Sun, C.T.: Microstructural design studies for locally dissipative acoustic metamaterials. J. Appl. Phys. 115, 023518 (2014)

    Article  Google Scholar 

  22. Baravelli, E., Carrara, M., Ruzzene, M.: High stiffness, high damping chiral metamaterial assemblies for low-frequency applications. In: Health Monitoring of Structural and Biological Systems, San Dieo, USA, pp. 86952K–86952K-10 (2013)

  23. Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004)

    Article  Google Scholar 

  24. Hirsekorn, M.: Small-size sonic crystals with strong attenuation bands in the audible frequency range. Appl. Phys. Lett. 84, 3364–3366 (2004)

    Article  Google Scholar 

  25. Huang, H.H., Sun, C.T.: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. N. J. Phys. 11, 013003 (2009)

    Article  Google Scholar 

  26. Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun. Nonlinear Sci. Numer. Simul. 51, 89–104 (2017)

    Article  MathSciNet  Google Scholar 

  27. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132, 031001 (2010)

    Article  Google Scholar 

  28. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013)

    Article  Google Scholar 

  29. Rudenko, O.V.: Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic techniques. Physics-Uspekhi 49, 69–87 (2006)

    Article  Google Scholar 

  30. Guo, X., Lin, Z., Tu, J., Liang, B., Cheng, J., Zhang, D.: Modeling and optimization of an acoustic diode based on micro-bubble nonlinearity. J. Acoust. Soc. Am. 133, 1119–1125 (2013)

    Article  Google Scholar 

  31. Popa, B.-I., Cummer, S.A.: Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014)

    Article  Google Scholar 

  32. Wang, Y.-Z., Wang, Y.-S.: Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78, 1–8 (2018)

    Article  MathSciNet  Google Scholar 

  33. Nadkarni, N., Arrieta, A.F., Chong, C., Kochmann, D.M., Daraio, C.: Unidirectional transition waves in bistable lattices. Phys. Rev. Lett. 116, 244501 (2016)

    Article  Google Scholar 

  34. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)

    Article  Google Scholar 

  35. Jutte, C.V., Kota, S.: Design of nonlinear springs for prescribed load-displacement functions. J. Mech. Des. 130, 081403–081403 (2008)

    Article  Google Scholar 

  36. Oh, J.H., Kim, H.W., Ma, P.S., Seung, H.M., Kim, Y.Y.: Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications. Appl. Phys. Lett. 100, 213503 (2012)

    Article  Google Scholar 

  37. Liang, B., Yuan, B., Cheng, J.-C.: Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009)

    Article  Google Scholar 

  38. Liang, B., Guo, X.S., Tu, J., Zhang, D., Cheng, J.C.: An acoustic rectifier. Nat. Mater. 9, 989 (2010)

    Article  Google Scholar 

  39. Sun, H.-X., Zhang, S.-Y., Shui, X.-J.: A tunable acoustic diode made by a metal plate with periodical structure. Appl. Phys. Lett. 100, 103507 (2012)

    Article  Google Scholar 

  40. Gu, Z.-M., Hu, J., Liang, B., Zou, X.-Y., Cheng, J.-C.: Broadband non-reciprocal transmission of sound with invariant frequency. Nat. Sci. Rep. 6, 19824 (2016)

    Article  Google Scholar 

  41. Jiang, X., Liang, B., Zou, X.-Y., Yang, J., Yin, L.-L., Yang, J., Cheng, J.-C.: Acoustic one-way metasurfaces: asymmetric phase modulation of sound by subwavelength layer. Nat. Sci. Rep. 6, 28023 (2016)

    Article  Google Scholar 

  42. Manimala, J.M., Kulkarni, P.P., Madhamshetty, K.: Amplitude-activated mechanical wave manipulation devices using nonlinear metamaterials. Adv. Compos. Hybrid Mater. 1(4), 797–808 (2018)

    Article  Google Scholar 

  43. Spreemann, D., Folkmer, B., Manoli, Y.: Realization of nonlinear hardening springs with predefined characteristic for vibration transducers based on beam structures. MikroSystemTechnik (2011)

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Manimala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: List of symbols

Appendix: List of symbols

m :

Mass

k :

Stiffness

\({k}_{{n}}\) :

Nonlinear stiffness parameter

u :

Displacement

\(\omega \) :

Frequency

\(\alpha \) :

Mass ratio

\(\beta \) :

Stiffness ratio

\(\tau \) :

Non-dimensionalized time

\(\varepsilon \) :

Perturbation parameter

\(\varGamma \) :

Nonlinearity parameter

q :

Wave number

\(\mu \) :

Non-dimensionalized wave number

L :

Lattice length

\({A}_{1 }\) :

Amplitude of harmonic wave solution

D*:

Transmissibility

AM:

Acoustic metamaterial

LRAM:

Locally resonant acoustic metamaterial

NLAM:

Nonlinear acoustic metamaterial

DBWG:

Direction-biased wave guide

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, P.P., Manimala, J.M. Realizing passive direction-bias for mechanical wave propagation using a nonlinear metamaterial. Acta Mech 230, 2521–2537 (2019). https://doi.org/10.1007/s00707-019-02415-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02415-w

Navigation