Skip to main content
Log in

Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, an interface crack between dissimilar one-dimensional (1D) hexagonal quasicrystals with piezoelectric effect under anti-plane shear and in-plane electric loadings is studied. By using integral transform techniques, the mixed boundary value problem for the interface crack is reduced to the solution of singular integral equations, which can be further reduced to solving Riemann–Hilbert problems with an exact solution. An analytical full-field solution for phonon and phason stresses, electric fields and electric displacement in the cracked bi-materials is given, and of particular interest, the analytical expression of the phonon and phason stresses and electric displacements along the interface is obtained. The crack sliding displacements of the interface crack are provided, and it is found that the phonon and phason stress distributions inside the dissimilar quasicrystal material are independent of the material properties under the anti-plane shear and in-plane electric loadings. The results of the stress intensity factors energy release rate indicate that the crack propagation can either be enhanced or retarded depending on the magnitude and direction of the electric loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Article  Google Scholar 

  2. Janot, C.: Quasicrystals: A Primer. Clarendon Press. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  3. Ding, D.H., Yang, W.G., Hu, C.Z., Wang, R.H.: Generalized elasticity theory of quasicrystals. Phys. Rev. B. 48, 7003–7009 (1993)

    Article  Google Scholar 

  4. Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Science Press, Henderson (2016)

    Book  MATH  Google Scholar 

  5. Li, X.-F., Fan, T.Y.: A straight dislocation in one-dimensional hexagonal quasicrystals. Phys. Status Solidi B Basic Solid State Phys. 212, 19–26 (1999)

    Article  Google Scholar 

  6. Fan, T.Y., Li, X.-F., Sun, Y.F.: A moving screw dislocation in a one-dimensional hexagonal quasicrystal. Acta Phys. Sin. 8, 288–295 (1999)

    Google Scholar 

  7. Chen, W.Q., Ma, Y.L., Ding, H.J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 31, 633–641 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, X.: The general solution of one-dimensional hexagonal quasicrystal. Mech. Res. Commun. 33, 576–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 376, 2004–2009 (2012)

    Article  MATH  Google Scholar 

  10. Li, X.F., Fan, T.Y., Sun, Y.E.: A decagonal quasicrystal with a Griffith crack. Philos. Mag. A 79, 1943–1952 (1999)

    Article  Google Scholar 

  11. Shi, W.C.: Conservation integrals of any quasicrystal and application. Int. J. Fract. 144, 61–64 (2007)

    Article  MATH  Google Scholar 

  12. Shi, W.C.: Collinear periodic cracks and/or rigid line inclusions of antiplane sliding mode in one-dimensional hexagonal quasicrystal. Appl. Math. Comput. 215, 1062–1067 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Wang, X., Pan, E.: Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana J. Phys. 70, 911–933 (2008)

    Article  Google Scholar 

  14. Li, L.H., Fan, T.Y.: Exact solutions of two-infinite collinear cracks in a strip of one-dimensional quasicrystals. Appl. Math. Comput. 196, 1–5 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, J.H., Lu, Z.X.: Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals. Appl. Math. Comput. 217, 9397–9403 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Gao, Y., Ricoeur, A., Zhang, L.L.: Plane problems of cubic quasicrystal media with an elliptic hole or a crack. Phys. Lett. A. 375, 2775–2781 (2011)

    Article  Google Scholar 

  17. Guo, J.H., Yu, J., Xing, Y.M.: Anti-plane analysis on a finite crack in a one-dimensional hexagonal quasicrystal strip. Mech. Res. Commun. 52, 40–45 (2013)

    Article  Google Scholar 

  18. Li, X.Y.: Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int. J. Solids Struct. 51, 1442–1455 (2014)

    Article  Google Scholar 

  19. Sladek, J., Sladek, V., Atluri, S.N.: Path-independent integral in fracture mechanics of quasicrystals. Eng. Fract. Mech. 140, 61–71 (2015)

    Article  Google Scholar 

  20. Wang, Z.B., Scheel, Ricoeur, J.A.: Mixed-mode crack tip loading and crack deflection in 1D quasicrystals. Appl. Phys. A. 122, 1041 (2016)

    Article  Google Scholar 

  21. Rao, K.R.M., Rao, P.H., Chaitanya, B.S.K.: Piezoelectricity in quasicrystals: a group-theoretical study. Pramana 68, 481–487 (2007)

    Article  Google Scholar 

  22. Yang, J., Li, X.: The anti-plane shear problem of two symmetric cracks originating from an elliptical hole in 1D hexagonal piezoelectric QCs. Adv. Mater. Res. 936, 127–135 (2014)

    Article  Google Scholar 

  23. Yu, J., Guo, J.H., Pan, E., Xing, Y.M.: General solutions of plane problem in one-dimensional quasicrystal piezoelectric material and its application on fracture mechanics. Appl. Mathe. Mech. 82, 17–24 (2015)

    MATH  Google Scholar 

  24. Fan, C.Y., Li, Y., Xu, G.T., Zhao, M.H.: Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech. Res. Commun. 74, 39–44 (2016)

    Article  Google Scholar 

  25. Tupholme, G.E.: A non-uniformly loaded anti-plane crack embedded in a half-space of a one-dimensional piezoelectric quasicrystal. Meccanica 53, 973–983 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, Y.-B., Li, X.-F.: Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Eng. Fract. Mech. 189, 133–147 (2018)

    Article  Google Scholar 

  27. Zhou, Y.-B., Li, X.-F.: Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal. Philos. Mag. 98, 1780–1798 (2018)

    Article  Google Scholar 

  28. Li, Y.-D., Bao, R.H., Chen, W.Q.: Axial shear fracture of a transversely isotropic piezoelectric quasicrystal cylinder: Which field (phonon or phason) has more contribution? Eur. J. Mech. A Solids 71, 179–186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, Y.-B., Li, X.-F.: A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals. Appl. Math. Model. 65, 148–163 (2019)

    Article  MathSciNet  Google Scholar 

  30. Shi, W.C., Li, H.H., Gao, Q.H.: Interfacial cracks of antiplane sliding mode between usual elastic materials and quasicrystals. Key Eng. Mater. 340–341, 453–458 (2007)

    Article  Google Scholar 

  31. Zhao, M.H., Dang, H.Y., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrary shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 1: Theoretical solution. Eng. Fract. Mech. 179, 59–78 (2017)

    Article  Google Scholar 

  32. Dang, H.Y., Zhao, M.H., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrary shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 2: Numerical method. Eng. Fract. Mech. 180, 268–281 (2017)

    Article  Google Scholar 

  33. Gao, C.-F., Tong, P., Zhang, T.-Y.: Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. Int. J. Solids Struct. 41, 6613–6629 (2004)

    Article  MATH  Google Scholar 

  34. Wang, B.-L., Mai, Y.-W.: Fracture of piezoelectromagnetic materials. Mech. Res. Commun. 31, 65–73 (2004)

    Article  MATH  Google Scholar 

  35. Feng, W.J., Xue, Y., Zou, Z.Z.: Crack growth of an interfacial crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric and magnetic impact. Theor. Appl. Fract. Mech. 43, 376–394 (2005)

    Article  Google Scholar 

  36. Zhou, Z.-G., Wang, B., Sun, Y.-G.: Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42, 1155–1167 (2004)

    Article  MATH  Google Scholar 

  37. Zhong, X.-C., Li, X.-F.: A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials. Int. J. Eng. Sci. 44, 1394–1407 (2006)

    Article  Google Scholar 

  38. Hu, K.Q., Kang, Y.L., Li, G.Q.: Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta Mater. 182, 1–16 (2006)

    MATH  Google Scholar 

  39. Wang, B.L., Mai, Y.-W.: On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int. J. Eng. Sci. 41, 633–652 (2003)

    Article  Google Scholar 

  40. Hu, K.Q., Chen, Z.T., Zhong, Z.: Interface crack between magnetoelectroelastic and orthotropic half-spaces under in-plane loading. Theor. Appl. Fract. Mech. 96, 285–295 (2018)

    Article  Google Scholar 

  41. Hu, K.Q., Zhong, Z., Chen, Z.T.: Interface crack between magnetoelectroelastic and orthotropic half-spaces under anti-plane loading. Theor. Appl. Fract. Mech. 99, 95–103 (2019)

    Article  Google Scholar 

  42. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  43. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products: Corrected and Enlarged Edition. Academic Press, New York (1980)

    MATH  Google Scholar 

  44. Li, X.Y., Li, P.D., Wu, T.H.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A. 378, 826–834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sneddon, I.N.: Fourier Transforms. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  46. Suo, Z.: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. Lond. A 447, 331–358 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers’ insightful comments which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqiang Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Jin, H., Yang, Z. et al. Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect. Acta Mech 230, 2455–2474 (2019). https://doi.org/10.1007/s00707-019-02404-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02404-z

Navigation