Skip to main content
Log in

Normal contact damping model of mechanical interface considering asperity shoulder-to-shoulder contact and interaction

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

When two rough surfaces contact under normal static and dynamic forces, the contact damping is an important parameter for the vibration reduction. In this paper, a normal contact damping model is built by the statistical method, which involves the asperity shoulder-to-shoulder contact and interaction of adjacent asperities. Furthermore, the effects of the normal static force, vibration frequency and amplitude of mean separation on the normal contact damping are studied, respectively. Comparing contact damping of some classical models with the results of the proposed model, the effects of the asperity shoulder-to-shoulder contact and interaction can be revealed. According to the final conclusions, an appropriate normal contact damping can be obtained through changing the normal static force, frequency and amplitude of the mean separation, which has significance in some extent for the machine tool vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren, Y.: Identification of ’Effective’ linear joints using coupling and joint identification techniques. J. Vib. Acoust. 120(2), 331–338 (1998)

    Article  Google Scholar 

  2. Sepehri, A., Farhang, K.: On elastic interaction of nominally flat rough surfaces. J. Tribol. 130(1), 125–128 (2008)

    Article  Google Scholar 

  3. Gorbatikh, L., Popova, M.: Modeling of a locking mechanism between two rough surfaces under cyclic loading. Int. J. Mech. Sci. 48(9), 1014–1020 (2006)

    Article  MATH  Google Scholar 

  4. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc Lond. 295(1442), 300–319 (1966)

    Article  Google Scholar 

  5. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol. 109(2), 257–263 (1987)

    Article  Google Scholar 

  6. Kogut, L., Etsion, I.: A finite element based elastic-plastic model for the contact of rough surfaces. Model. Simul. Eng. 46(3), 383–390 (2011)

    Google Scholar 

  7. Kadin, Y., Kligerman, Y., Etsion, I.: Unloading an elastic-plastic contact of rough surfaces. J. Mech. Phys. Solids 54(12), 2652–2674 (2006)

    Article  MATH  Google Scholar 

  8. Etsion, I., Kligerman, Y., Kadin, Y.: Unloading of an elastic-plastic loaded spherical contact. Int. J. Solids Struct. 42(13), 3716–3729 (2005)

    Article  MATH  Google Scholar 

  9. Jackson, R.L., Green, I.: A finite element study of elastoplastic hemispherical contact against a rigid flat. J. Tribol. 127(2), 343–354 (2005)

    Article  Google Scholar 

  10. Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol Int. 39(9), 906–914 (2006)

    Article  Google Scholar 

  11. Jäger, J.: Axi-symmetric bodies of equal material in contact under torsion or shift. Arch. Appl. Mech. 65(7), 478–487 (1995)

    Article  MATH  Google Scholar 

  12. Faulkner, A., Arnell, R.D.: The development of a finite element model to simulate the sliding interaction between two, three-dimensional, elastoplastic, hemispherical asperities. Wear 242(1), 114–122 (2000)

    Article  Google Scholar 

  13. Jackson, R.L., Duvvuru, R.S., Meghani, H., Mahajan, M.: An analysis of elasto-plastic sliding spherical asperity interaction. Wear 262(1–2), 210–219 (2007)

    Article  Google Scholar 

  14. Abdo, J., Farhang, K.: Elastic-plastic contact model for rough surfaces based on plastic asperity concept. Int. J. Non-Linear Mech. 40(4), 495–506 (2005)

    Article  MATH  Google Scholar 

  15. Sepehri, A., Farhang, K.: Closed-form equations for three dimensional elastic-plastic contact of nominally flat rough surfaces. J. Tribol. 131(4), 041402 (2009)

    Article  Google Scholar 

  16. Mulvihill, D.M., Kartal, M.E., Nowell, D., Hills, D.A.: An elastic-plastic asperity interaction model for sliding friction. Tribol. Int. 44(12), 1679–1694 (2011)

    Article  Google Scholar 

  17. Shi, X., Zou, Y., Fang, H.: Numerical investigation of the three-dimensional elastic-plastic sloped contact between two hemispheric asperities. J. Appl. Mech. 83(10), (2016)

  18. Ciavarella, M., Greenwood, J.A., Paggi, M.: Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear 265(5), 729–734 (2008)

    Article  Google Scholar 

  19. Zhao, Y., Chang, L.: A model of asperity interactions in elastic-plastic contact of rough surfaces. J. Tribol. 123(4), 857 (2001)

    Article  Google Scholar 

  20. Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86–93 (2000)

    Article  Google Scholar 

  21. Knowles, J.K.: On Saint-Venant’s principle in the two-dimensional linear theory of elasticity. Arch Ration. Mech. Anal. 21(1), 1–22 (1966)

    Article  MathSciNet  Google Scholar 

  22. Love, A.E.H.: The stress produced in a semi-infinite solid by pressure on part of the boundary. Phil. Trans. R. Soc. Lond. 228(659–669), 377–420 (1929)

    Article  MATH  Google Scholar 

  23. Jeng, Y.R., Peng, S.R.: Elastic-plastic contact behavior considering asperity interactions for surfaces with various height distributions. J. Tribol. 128(2), 665–697 (2006)

    Article  Google Scholar 

  24. Chandrasekar, S., Eriten, M., Polycarpou, A.A.: An improved model of asperity interaction in normal contact of rough surfaces. J. Appl. Mech. 80(1), 1025 (2013)

    Google Scholar 

  25. Yoshimure, M.: Computer design improvement of machine tool structure incorporation joint dynamics data (1980)

  26. Fu, W.P., Huang, Y.M., Zhang, X.L., Guo, Q.: Experimental investigation of dynamic normal characteristics of machined joint surfaces. J. Vib. Acoust. 122(4), 393–398 (2000)

    Article  Google Scholar 

  27. Shi, X., Polycarpou, A.A.: Measurement and modeling of normal contact stiffness and contact damping at the meso scale. J. Vib. Acoust. 127(1), 52–60 (2005)

    Article  Google Scholar 

  28. Misra, A.: Mechanist model for contact between rough surfaces. J. Eng. Mech. 123(5), 45352–45357 (2011)

    Google Scholar 

  29. Misra, A., Huang, S.: Effect of loading induced anisotropy on the shear behavior of rough interfaces. Tribol. Int. 44(5), 627–634 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China under Grant No. 51275407, 51475363. The authors gratefully acknowledge financial support provided by NNSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Fu, W. & Wang, W. Normal contact damping model of mechanical interface considering asperity shoulder-to-shoulder contact and interaction. Acta Mech 230, 2413–2424 (2019). https://doi.org/10.1007/s00707-019-02392-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02392-0

Navigation