Skip to main content
Log in

Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Enlightened by the Caputo fractional derivative, the present study treats with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena for a fiber-reinforced hollow cylinder due to the influence of thermal shock and magnetic field in the context of a three-phase-lag model of generalized thermoelasticity, which is defined in an integral form of a common derivative on a slipping interval by incorporating the memory-dependent heat transfer. Employing Laplace transform as a tool, the problem has been transformed to the space domain, where the Galerkin finite element technique is incorporated to solve the resulting equations in the transformed domain. The inversion of the Laplace transform is carried out numerically on applying a method of Bellman et al. According to the graphical representations corresponding to the numerical results, conclusions about the new theory are constructed. Excellent predictive capability is demonstrated due to the presence of reinforcement, memory-dependent derivative, and magnetic field also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)

    Article  Google Scholar 

  2. Sur, A., Kanoria, M.: Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 173, 875–882 (2017)

    Article  Google Scholar 

  3. Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Euro. J. Comput. Mech. 23, 179–198 (2014)

    Article  Google Scholar 

  4. Das, P., Kanoria, M.: Study of finite thermal waves in a magneto-thermo-elastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)

    Article  Google Scholar 

  5. Das, P., Kar, A., Kanoria, M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)

    Article  Google Scholar 

  6. Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J. Therm. Stress. 41(8), 973–992 (2018)

    Article  Google Scholar 

  7. Karmakar, R., Sur, A., Kanoria, M.: Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 57(4), 652–665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sur, A., Kanoria, M.: Finite thermal wave propagation in a half-space due to variable thermal loading. Appl. Math. 9(1), 94–120 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30, 231–238 (2007)

    Article  Google Scholar 

  10. Chakravorty, S., Ghosh, S., Sur, A.: Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 173, 851–858 (2017)

    Article  Google Scholar 

  11. Sur, A., Kanoria, M.: Fractional order generalized thermoelastic functionally graded solid with variable material properties. J. Solid Mech. 6, 54–69 (2014)

    Google Scholar 

  12. Sur, A., Kanoria, M.: Three dimensional thermoelastic problem under two-temperature theory. Int. J. Comput. Methods 14(03), 1750030 (2017). https://doi.org/10.1142/S021987621750030X

    Article  MathSciNet  MATH  Google Scholar 

  13. Diethelm, K.: The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  14. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Roy. Astron. Soc. 3, 529–539 (1967)

    Article  Google Scholar 

  15. Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Rivista el Nuovo cimento. 1, 161–198 (1971)

    Article  Google Scholar 

  16. Sur, A., Kanoria, M.: Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 223, 2685–2701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Purkait, P., Sur, A., Kanoria, M.: Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer. Int. J. Adv. Appl. Math. Mech. 5(1), 28–39 (2017)

    MathSciNet  Google Scholar 

  18. Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Electro-thermoelasticity theory with memory-dependent derivative heat transfer. Int. J. Eng. Sci. 99, 22–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ezzat, M.A., El-Bary, A.A.: Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J. Mech. Sci. Tech. 29, 4273–4279 (2015)

    Article  Google Scholar 

  21. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mater. Struct. 23, 545–553 (2016)

    Article  Google Scholar 

  22. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Modeling of memory-dependent derivative in generalized thermoelasticity. Eur. Phys. J. Plus 131, 372 (2016)

    Article  Google Scholar 

  23. Lotfy, K., Sarkar, N.: Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature. Mech. Time-Depend. Mater. 21, 519–534 (2017). https://doi.org/10.1007/s11043-017-9340-5

    Article  Google Scholar 

  24. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Karamany, A.S., Ezzat, M.A.: Thermoelastic diffusion with memory-dependent derivative. J. Therm. Stress. 39, 1035–1050 (2016)

    Article  Google Scholar 

  26. Sur, A., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin Walled Struct. 126, 85–93 (2018). https://doi.org/10.1016/j.tws.2017.05.005

    Article  Google Scholar 

  27. Chiriţǎ, S., D’Apice, C., Zampoli, V.: The time differential three-phase-lag heat conduction model: thermodynamic compatibility and continuous dependence. Int. J. Heat Mass Transf. 102, 226–232 (2016)

    Article  Google Scholar 

  28. Zampoli, V., Landi, A.: A domain of influence result about the time differential three-phase-lag thermoelastic model. J. Therm. Stress. 40, 108–120 (2017). https://doi.org/10.1080/01495739.2016.1195242

    Article  Google Scholar 

  29. Sherief, H.H., Helmy, A.K.: A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int. J. Eng. Sci. 40, 587–604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Othman, M.I.A.: Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Mult. Model. Mater. Struct. 1, 231–250 (2005)

    Article  Google Scholar 

  31. Othman, M.I.A., Zidan, M.E.M., Hilal, M.I.M.: The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Can. J. Phys. 92, 1359–1371 (2014)

    Article  Google Scholar 

  32. Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)

    Article  Google Scholar 

  33. Bellman, R., Kolaba, R.E., Lockette, J.A.: Numerical Inversion of the Laplace Transform. American Elsevier, New York (1966)

    Google Scholar 

  34. Othman, M.I.A.: Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation time. Mech. Eng. 14(1), 5–30 (2010)

    Google Scholar 

  35. Nowacki, W.: Dynamic Problem of Thermoelasticity, vol. 399. Noordhoff International, Leyden (1975)

    MATH  Google Scholar 

  36. Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-reinforced Composites. Springer, Berlin. ISBN 978-3-7091-4336-0 (1984)

  37. Markham, M.F.: Measurement of the elastic constants of fibre composites by ultrasonics. Composites 1(2), 145–149 (1970)

    Article  Google Scholar 

  38. Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publishing Corporation, New Delhi (1980)

    Google Scholar 

  39. Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids. 22, 718–736 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Quintanilla, R., Racke, R.: A note on stability in three-phase-lag heat conduction. J. Heat. Mass. Transf. 51, 24–29 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, A., Pal, P., Mondal, S. et al. Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mech 230, 1607–1624 (2019). https://doi.org/10.1007/s00707-018-2357-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2357-2

Navigation