Skip to main content
Log in

Micropolar plasticity—Part I: modeling based on curvature tensors related by mixed transformations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

When formulating finite deformation micropolar plasticity, the structure of the theory strongly depends on the choice of the variables describing the deformation kinematics. This holds true even for classical plasticity. However, in contrast to classical plasticity, the set of kinematical variables in micropolar plasticity includes, besides strain tensors, so-called micropolar curvature tensors. There are only a few investigations addressing such aspects, so the aim of the paper is to highlight the effect of a specific micropolar curvature kinematics on the structure of a micropolar plasticity. We do this by developing a general finite deformation micropolar plasticity, which relies upon a class of micropolar curvature tensors related to each other by mixed transformations. That means, the pull-back and push-forward transformations characterizing the class involve both deformation gradient and micropolar rotation tensors. The curvature kinematics is discussed by using geometrical methods developed previously. The plasticity theory is based on the assumption that the yield function and the flow rules are functions of specific micropolar Mandel’s stress tensors. The definition of the Mandel’s stress tensor is suggested by the adopted curvature kinematics and reveals a characteristic feature of the resulting plasticity. Moreover, the presence of curvature variables in plastic arc length gives reason to introduce a characteristic internal material length, which in turn seems to urge the form of the formulation of the theory. A specific version of von Mises micropolar plasticity with kinematic and isotropic hardening, derived in the theoretical context of the present paper, is elaborated in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ask, A., Forest, S., Appolaire, B., Ammar, K., Salman, O.U.: A Cosserat crystal plasticity and phase field theory for grain boundary migration. J. Mech. Phys. Solids 115, 167–194 (2018). https://doi.org/10.1016/j.jmps.2018.03.006

    Article  MathSciNet  Google Scholar 

  2. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 231(1185), 263–273 (1955). https://doi.org/10.1098/rspa.1955.0171. ISSN 0080-4630

    MathSciNet  Google Scholar 

  3. Broese, C., Sfyris, D., Tsakmakis, Ch.: Isoclinic versus arbitrary rotated intermediate configuration for gradient plasticity applications. Compos. Part B Eng. 43(6), 2633–2645 (2012). https://doi.org/10.1016/j.compositesb.2012.03.016. ISSN 1359-8368. Homogenization and micromechanics of smart and multifunctional materials

    Article  Google Scholar 

  4. Chaboche, J.-L.: Cyclic viscoplastic constitutive equations, part I: a thermodynamically consistent formulation. J. Appl. Mech. 60(4), 813–821 (1993). https://doi.org/10.1115/1.2900988. ISSN 0021-8936

    Article  MATH  Google Scholar 

  5. Chaboche, J.-L.: Cyclic viscoplastic constitutive equations, part II: stored energy—comparison between models and experiments. J. Appl. Mech. 60(4), 822–828 (1993). https://doi.org/10.1115/1.2900990. ISSN 0021-8936

    Article  Google Scholar 

  6. Châu Le, K., Stumpf, H.: Finite Elastoplasticity with Microstructure. Mitteilungen aus dem Institut für Mechanik // Ruhr-Universität Bochum. Ruhr-Univ. (1994). https://books.google.de/books?id=BdjLtgAACAAJ

  7. Cho, H.W., Dafalias, Y.F.: Distortional and orientational hardening at large viscoplastic deformations. Int. J. Plast. 12(7), 903–925 (1996). https://doi.org/10.1016/S0749-6419(96)00033-2. ISSN 0749-6419

    Article  MATH  Google Scholar 

  8. Cleja-Ţigoiu, S.: Couple stresses and non-Riemannian plastic connection in finite elasto-plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 53(6), 996–1013 (2002). https://doi.org/10.1007/PL00012625. ISSN 1420-9039

    Article  MathSciNet  MATH  Google Scholar 

  9. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13(1), 167–178 (1963). https://doi.org/10.1007/BF01262690. ISSN 0003-9527

    Article  MathSciNet  MATH  Google Scholar 

  10. Dafalias, Y .F.: On multiple spins and texture development. Case study: kinematic and orthotropic hardening. Acta Mech. 100(3), 171–194 (1993). https://doi.org/10.1007/BF01174788. ISSN 1619-6937

    Article  MathSciNet  MATH  Google Scholar 

  11. de Borst, R.: A generalisation of J2-flow theory for polar continua. Eng. Comput. 10(2), 99–121 (1993)

    Article  Google Scholar 

  12. deWit, R.: Relation between dislocations and disclinations. J. Appl. Phys. 42(9), 3304–3308 (1971). https://doi.org/10.1063/1.1660730

    Article  Google Scholar 

  13. Dłużewski, P.H.: Finite elastic-plastic deformations of oriented media. In: Benellal, A., Billardon, R. (eds.) Proceedings of international symposium on multiaxial plasticity, MECAMAT’92, Cachan, France. Labolatoire de Mecanique et Technologie (1992)

  14. Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948). https://doi.org/10.1103/PhysRev.73.373

    Article  MathSciNet  MATH  Google Scholar 

  15. Eringen, A.C.: Microcontinuum Field Theories: Volume 1, Foundations and Solids. Microcontinuum Field Theories: Foundations and Solids. Springer, Berlin (1999). ISBN 9780387986203

  16. Eringen, A .C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, vol. 2, pp. 621–729. Academic Press, Cambridge (1968)

    Google Scholar 

  17. Eringen, A.C., Kafadar, C.B.: Polar field theories. In: Eringen, A.C. (ed.) Continuum Physics, vol. 4, pp. 1–73. Academic Press, New York (1976)

    Google Scholar 

  18. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245–2271 (2001). https://doi.org/10.1016/S0022-5096(01)00049-7. ISSN 0022-5096

    Article  MATH  Google Scholar 

  19. Forest, S.: Micromorphic media. In: Altenbach, H., Eremeyev, V.A. (eds.) Generalized Continua from the Theory to Engineering Applications, vol. 541 of CISM International Centre for Mechanical Sciences, pp. 249–300. Springer, Vienna (2013). https://doi.org/10.1007/978-3-7091-1371-4_5. ISBN 978-3-7091-1370-7

    Chapter  Google Scholar 

  20. Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160(1), 71–111 (2003). https://doi.org/10.1007/s00707-002-0975-0. ISSN 1619-6937

    Article  MATH  Google Scholar 

  21. Forest, S., Cailletaud, G., Sievert, R.: A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49(4), 705–736 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Grammenoudis, P., Tsakmakis, Ch.: Hardening rules for finite deformation micropolar plasticity: restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin. Contin. Mech. Thermodyn. 13(5), 325–363 (2001). https://doi.org/10.1007/s001610100055. ISSN 0935-1175

    Article  MathSciNet  MATH  Google Scholar 

  23. Grammenoudis, P., Tsakmakis, Ch.: Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. Int. J. Numer. Methods Eng. 62, 1691–1720 (2005)

    Article  MATH  Google Scholar 

  24. Grammenoudis, P., Tsakmakis, Ch.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2053), 189–205 (2005). https://doi.org/10.1098/rspa.2004.1377

  25. Grammenoudis, P., Tsakmakis, Ch.: Incompatible deformations—plastic intermediate configuration. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 88(5), 403–432 (2008). https://doi.org/10.1002/zamm.200800015. ISSN 1521-4001

    Article  MathSciNet  MATH  Google Scholar 

  26. Grammenoudis, P., Tsakmakis, Ch.: Plastic intermediate configuration and related spatial differential operators in micromorphic plasticity. Math. Mech. Solids 15(5), 515–538 (2010). https://doi.org/10.1177/1081286509104829

    Article  MathSciNet  MATH  Google Scholar 

  27. Grammenoudis, P., Tsakmakis, Ch., Hofer, D.: Micromorphic continuum. Part II: finite deformation plasticity coupled with damage. Int. J. Non Linear Mech. 44(9), 957–974 (2009). https://doi.org/10.1016/j.ijnonlinmec.2009.05.004. ISSN 0020-7462

    Article  Google Scholar 

  28. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010). ISBN 9781139482158

  29. Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48(5), 989–1036 (2000). https://doi.org/10.1016/S0022-5096(99)00059-9. ISSN 0022-5096

    Article  MathSciNet  MATH  Google Scholar 

  30. Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5–32 (2002). https://doi.org/10.1016/S0022-5096(01)00104-1. ISSN 0022-5096

    Article  MathSciNet  MATH  Google Scholar 

  31. Haupt, P., Tsakmakis, Ch.: Stress tensors associated with deformation tensors via duality. Arch. Mech. 48(2), 347–384 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Kondo, K. (ed.): Non-Riemannian geometry of the imperfect crystal from a macroscopic viewpoint. In: RAAG Memoirs of the Unifying Study of Basic Problems in Engineering Sciences by Means of Geometry, vol. 1, Division D, pp. 458–469. Gakuyusty Bunken Fukin-Day, Tokyo (1955)

  33. Kondo, K., Shimbo, M., Amari, S.: On the standpoint of non-Riemannian plasticity theory. In: Kondo, K. (ed.) RAAG Memoirs of the Unifying Study of Basic Problems in Engineering Sciences by Means of Geometry, vol. 4, pp. 205–224. Gakujutsu Bunken Fukyu-kai, Tokyo (1968)

    Google Scholar 

  34. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  35. Kröner, E.: Continuum theory of defects. In: Balian, R., Kleman, M., Poirier, J.-P. (eds.) Physics of Defects. Les Houches Session XXXV, vol. 35, pp. 217–315. North-Holland, Amsterdam (1981)

    Google Scholar 

  36. Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969). https://doi.org/10.1115/1.3564580

    Article  MATH  Google Scholar 

  37. Lee, E.H., Liu, D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38(1), 19–27 (1967). https://doi.org/10.1063/1.1708953

    Article  Google Scholar 

  38. Lubliner, J.: Normality rules in large-deformation plasticity. Mech. Mater. 5(1), 29–34 (1986). https://doi.org/10.1016/0167-6636(86)90013-X. ISSN 0167-6636

    Article  Google Scholar 

  39. Materially Uniform Simple Bodies with Inhomogeneities. Department of Mathematics, Carnegie Institute of Technology, Pittsburgh (1967). http://books.google.de/books?id=vb3ztgAACAAJ

  40. Minagawa, S.: Elastic fields of dislocations and disclinations in an isotropic micropolar continuum. Lett. Appl. Eng. Sci 5, 85–94 (1977)

    MATH  Google Scholar 

  41. Ogden, R.W.: Non-linear Elastic Deformations. Dover Civil and Mechanical Engineering, Dover Publications, New York (1997). ISBN 9780486696485

  42. Regueiro, R.A.: On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47(6), 786–800 (2010). https://doi.org/10.1016/j.ijsolstr.2009.11.006. ISSN 0020-7683

    Article  MATH  Google Scholar 

  43. Sansour, C.: A theory of the elastic-viscoplastic Cosserat continuum. Arch. Mech. 50(3), 577–597 (1998)

    MATH  Google Scholar 

  44. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994). https://doi.org/10.1016/0020-7683(94)90164-3. ISSN 0020-7683

    Article  MathSciNet  MATH  Google Scholar 

  45. Svendsen, B.: Objective frame derivatives for the hyperstress and couple stress. Arch. Mech. 46, 669–683 (1994). 01

    MathSciNet  MATH  Google Scholar 

  46. Svendsen, B.: A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int. J. Plast. 14(6), 473–488 (1998). https://doi.org/10.1016/S0749-6419(98)00002-3. ISSN 0749-6419

    Article  MATH  Google Scholar 

  47. Svendsen, B.: On the modelling of anisotropic elastic and inelastic material behaviour at large deformation. Int. J. Solids Struct. 38(52), 9579–9599 (2001). https://doi.org/10.1016/S0020-7683(01)00140-8. ISSN 0020-7683

    Article  MATH  Google Scholar 

  48. Svendsen, B., Arndt, S., Klingbeil, D., Sievert, R.: Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation. Int. J. Solids Struct. 35(25), 3363–3389 (1998). https://doi.org/10.1016/S0020-7683(98)00009-2. ISSN 0020-7683

    Article  MATH  Google Scholar 

  49. Tsakmakis, Ch.: On the loading conditions and the decomposition of deformation. In: Boehler, J.-P., Khan, A.S. (eds.) Anisotropy and Localization of Plastic Deformation, pp. 353–356. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3644-0_82. ISBN 978-1-85166-688-1

    Chapter  Google Scholar 

  50. Tsakmakis, Ch.: Description of plastic anisotropy effects at large deformations-part I: restrictions imposed by the second law and the postulate of Il’iushin. Int. J. Plast. 20(2), 167–198 (2004). https://doi.org/10.1016/S0749-6419(03)00013-5. ISSN 0749-6419

    Article  MATH  Google Scholar 

  51. Volk, W.: Untersuchung des Lokalisierungsverhaltens mikropolarer poröser Medien mit Hilfe der Cosserat-Theorie. Bericht Nr. II-2. Universität Stuttgart Inst. f. Mechanik (Bauwesen), Stuttgart (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Johannsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johannsen, D., Tsakmakis, C. Micropolar plasticity—Part I: modeling based on curvature tensors related by mixed transformations. Acta Mech 230, 1565–1606 (2019). https://doi.org/10.1007/s00707-018-2349-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2349-2

Navigation