Skip to main content
Log in

Solutions of the elastic fields in a half-plane region containing multiple inhomogeneities with the equivalent inclusion method and the applications to properties of composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a solution of the elastic fields of a half-plane composite structure containing distributed multiple circular inhomogeneities under boundary loading. The solution is obtained with a semi-analytical approach by combining the Green’s function and the equivalent inclusion method. This approach can achieve high accuracy and can be easily implemented with less computational effort compared with other numerical methods. Then, this solution is further used to explore the boundary effects on the elastic fields and effective elastic properties of the half-plane composite structure containing square periodically distributed circular inhomogeneities. Influences of the boundary and the inhomogeneity volume fraction on the elastic fields are examined in detail. Local effective elastic constants of the composite structure are predicted using the unit cells. The results show that the boundary has a significant effect on the elastic fields and elastic properties of the half-plane composite structure. The average displacement predicted with the conventional effective elastic constants of unit cells may deviate from the real value. Thus, we propose a design of a composite structure with a uniform elastic constant and develop an analytical model to calculate the average displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Richardson, M.K.: Interference stresses in a half plane containing an elastic disk of the same material. J. Appl. Mech. 36, 128–130 (1969)

    Article  Google Scholar 

  3. Saleme, E.M.: Stress distribution around a circular inclusion in a semi-infinite elastic plate. J. Appl. Mech. 25, 129–135 (1958)

    MATH  Google Scholar 

  4. Shioya, S.: On a semi-infinite thin plate with a circular inclusion under uniform tension. Bull. Jpn. Soc. Mech. Eng. 10, 1–9 (1967)

    Article  Google Scholar 

  5. Lee, M., Jasiuk, I., Tsuchida, E.: The sliding circular inclusion in an elastic half-plane. J. Appl. Mech. 59, 57–64 (1992)

    Article  MATH  Google Scholar 

  6. Al-Ostaz, A., Jasiuk, I., Lee, M.: Circular inclusion in half-plane: effect of boundary conditions. J. Eng. Mech. 124, 293–300 (1998)

    Article  Google Scholar 

  7. Furuhashi, R., Huang, J.H., Mura, T.: Sliding inclusions and inhomogeneities with frictional interfaces. J. Appl. Mech. 59, 783–788 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ru, C.Q.: Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane. J. Appl. Mech. 66, 315–322 (1999)

    Article  MathSciNet  Google Scholar 

  9. Ru, C.Q.: Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta Mech. 160(3–4), 219–234 (2003)

    Article  MATH  Google Scholar 

  10. Sun, Y.F., Peng, Y.Z.: Analytic solutions for the problems of an inclusion of arbitrary shape embedded in a half-plane. Appl. Math. Comput. 140, 105–113 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Zou, W., Lee, Y.: Completely explicit solutions of Eshelby’s problems of smooth inclusions embedded in a circular disk, full- and half-planes. Acta Mech. 229(5), 1911–1926 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, C.Y., Lo, S.H., Cheung, Y.K.: Numerical solution for elastic half-plane inclusion problems by different integral equation approaches. Eng. Anal. Bound. Elem. 28, 123–130 (2004)

    Article  MATH  Google Scholar 

  13. Legros, B., Mogilevskaya, S.G., Crouch, S.L.: A boundary integral method for multiple circular inclusions in an elastic half-plane. Eng. Anal. Bound. Elem. 28, 1083–1098 (2004)

    Article  MATH  Google Scholar 

  14. Lee, J., Ku, D., Mal, A.: Elastic analysis of a half-plane with multiple inclusions using volume integral equation method. Eng. Anal. Bound. Elem. 35, 564–574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kushch, V.I., Shmegera, S.V., Buryachenko, V.A.: Elastic equilibrium of a half plane containing a finite array of elliptic inclusions. Int. J. Solids Struct. 43, 3459–3483 (2006)

    Article  MATH  Google Scholar 

  16. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252, 561–569 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. Takao, Y., Chou, T.W., Taya, M.: Effective longitudinal Young’s modulus of misoriented short fiber composites. J. Appl. Mech. 49, 536–540 (1982)

    Article  MATH  Google Scholar 

  18. Chen, C., Cheng, C.: Effective elastic moduli of misoriented short-fiber composites. Int. J. Solids Struct. 33, 2519–2539 (1996)

    Article  MATH  Google Scholar 

  19. Yin, H.M., Buttlar, W.G., Paulino, G.H., Di Benedetto, H.: Assessment of existing micromechanical models for asphalt mastics considering viscoelastic effects. Road Mater. Pavement 9, 31–57 (2008)

    Article  Google Scholar 

  20. Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)

    Article  MATH  Google Scholar 

  21. Hatta, H., Taya, M.: Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 24, 1159–1172 (1986)

    Article  MATH  Google Scholar 

  22. Yin, H.M., Paulino, G., Buttlar, W.G., Sun, L.Z.: Effective thermal conductivity of two-phase functionally graded particulate composites. J. Appl. Phys. 98, 607–644 (2005)

    Article  Google Scholar 

  23. Yin, H.M., Paulino, G., Buttlar, W.G., Sun, L.Z.: Effective thermal conductivity of graded nanocomposites with interfacial thermal resistance. J. Appl. Mech. 75, 321–326 (2008)

    Article  Google Scholar 

  24. Takei, T., Hatta, H., Taya, M.: Thermal expansion behavior of particulate-filled composites I: single reinforcing phase. Mat. Sci. Eng. A 131, 133–143 (1991)

    Article  Google Scholar 

  25. Takei, T., Hatta, H., Taya, M.: Thermal expansion behavior of particulate-filled composites II: multi-reinforcing phases (hybrid composites). Mat. Sci. Eng. A 131, 145–152 (1991)

    Article  Google Scholar 

  26. Yin, H.M., Paulino, G., Buttlar, W., Sun, L.Z.: Micromechanics-based thermoelastic model for functionally graded particulate materials with particle interactions. J. Mech. Phys. Solids 55, 132–160 (2007)

    Article  MATH  Google Scholar 

  27. Sakata, S., Ashida, F., Kojima, T.: Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach. Comput. Struct. 88, 458–466 (2010)

    Article  Google Scholar 

  28. Zhou, K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223(2), 293–308 (2012)

    Article  MATH  Google Scholar 

  29. Liu, Y.J., Yin, H.M.: Equivalent inclusion method-based simulation of particle sedimentation toward functionally graded material manufacturing. Acta Mech. 225(4–5), 1429–1445 (2014)

    Article  MathSciNet  Google Scholar 

  30. Yang, J., Fan, Q., Zeng, L., Keer, L.M., Zhou, K.: On the plastic zone sizes of cracks interacting with multiple inhomogeneous inclusions in an infinite space. Acta Mech. 229(2), 497–514 (2018)

    Article  MathSciNet  Google Scholar 

  31. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nanoinhomogeneities. Proc. R. Soc. Lond. A 461, 3335–3353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Duan, H.L., Yi, X., Huang, Z.P., Wang, J.: Eshelby equivalent inclusion method for composites with interface effects. Key Eng. Mater. 312, 161–166 (2006)

    Article  Google Scholar 

  33. Chen, Y.Q., Huang, R.C., Huang, Z.P.: Effect of residual interface stresses on effective specific heats of multiphase thermoelastic nanocomposites. Acta Mech. 225(4–5), 1107–1119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao, X.Z., Song, D.K., Xue, J.M., Chu, H.J., Duan, H.L.: A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated FCC metallic polycrystals. J. Mech. Phys. Solids 78, 1–16 (2015)

    Article  MathSciNet  Google Scholar 

  35. Chiang, C.R.: Eshelby’s tensor of a cubic piezoelectric crystal under plane strain condition and its application to elliptic cavity problems. Acta Mech. 228(2), 595–606 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mura, T.: Micromechanics of Defects in Solids. Kluwer, Dordrecht (1987)

    Book  MATH  Google Scholar 

  37. Liu, Y.J., Song, G., Yin, H.M.: Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities. Proc. R. Soc. Lond. A 471, 20150174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Luciano, R., Willis, J.R.: Boundary-layer corrections for stress and strain fields in randomly heterogeneous materials. J. Mech. Phys. Solids 51, 1075–1088 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trias, D., Costa, J., Mayugo, J.A., Hurtado, J.E.: Random models versus periodic models for fiber reinforced composites. Comput. Mater. Sci. 38, 316–324 (2006)

    Article  Google Scholar 

  40. Harper, L.T., Qian, C., Turner, T.A., Li, S., Warrior, N.A.: Representative volume elements for discontinuous carbon fibre composites. Part 1: boundary conditions. Compos. Sci. Technol. 72, 225–234 (2012)

    Article  Google Scholar 

  41. Melan, E.: Der Spannungszustand der durch eine einzelkraft im innern beanspruchten halbscheibe. Z. Angew. Math. Mech. 12, 343–346 (1932). (in German)

    Article  MATH  Google Scholar 

  42. Wang, M.Z.: Advanced Elasticity. Peking University, Beijing (2002). (in Chinese)

    Google Scholar 

  43. Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  44. Tandon, G.P., Weng, G.J.: Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol. 27, 111–132 (1986)

    Article  Google Scholar 

  45. Halpin, J.C., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976)

    Article  Google Scholar 

  46. Silling, S.: Origin and effect of nonlocality in a composite. J. Mech. Mater. Struct. 9, 245–258 (2014)

    Article  Google Scholar 

  47. Wang, L.J., Xu, J., Wang, J.: Static and dynamic Green’s functions in peridynamics. J. Elast. 126, 95–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

X. Dang, L. J. Wang and J. Wang thank the support of the National Natural Science Foundation of China under Grant Nos. 11872075 and 11521202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, X., Liu, Y., Wang, L. et al. Solutions of the elastic fields in a half-plane region containing multiple inhomogeneities with the equivalent inclusion method and the applications to properties of composites. Acta Mech 230, 1529–1547 (2019). https://doi.org/10.1007/s00707-018-2340-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2340-y

Navigation