Skip to main content
Log in

Edge dislocation with surface flexural resistance in micropolar materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We employ a micropolar surface model, capable of incorporating bending and twisting rigidities, to analyze the fundamental problem of the deformation of a micropolar half-plane containing a single-edge dislocation. The surface model is based on a Kirchhoff–Love micropolar thin shell of separate elasticity perfectly bonded to the surrounding micropolar bulk. Combining micropolar elasticity with a higher-order surface model allows for the incorporation of size effects well known to be essential in, for example, continuum-based modeling of nanostructured materials. The corresponding boundary value problems are solved analytically using Fourier integral transforms. We illustrate our results by constructing the resulting stress distributions for the most general case of a micropolar material with surface stretching, flexural, and micropolar twisting resistance. To verify our results, we show that under appropriate simplifying assumptions, our solutions reduce to the corresponding solutions in the literature from classical elasticity and also to those which employ micropolar elasticity in the absence of surface effects. Finally, we report on the significance of the contribution of the newly incorporated surface and bulk parameters on the overall solution of the micropolar edge dislocation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  2. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Suhubl, E.S., Eringen, A.C.: Nonlinear theory of micro-elastic solids—II. Int. J. Eng. Sci. 2(4), 389–404 (1964)

    Article  MathSciNet  Google Scholar 

  5. Eringen, A.C.: Continuum Physics. Volume—Polar and Nonlocal Field Theories. Academic Press, New York (1976)

    Google Scholar 

  6. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(6), 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  7. Wang, X., Lee, J.D.: Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1(2), 115–135 (2010)

    Article  Google Scholar 

  8. Kaloni, P.N., Ariman, T.: Stress concentration effects in micropolar elasticity. Acta Mech. 4(3), 216–229 (1967)

    Article  MATH  Google Scholar 

  9. Warren, W.E., Byskov, E.: A general solution to some plane problems of micropolar elasticity. Eur. J. Mech. A. Solids 27, 18–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eringen, A.C.: Theory of micropolar plates. ZAMP 18(1), 12–30 (1967)

    MathSciNet  Google Scholar 

  11. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  12. Sharma, P., Dasgupta, A.: Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities. Phys. Rev. B 66(224110), 1–10 (2002)

    Google Scholar 

  13. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  15. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  16. Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. J. Appl. Mech. 74(3), 568–574 (2007)

    Article  MATH  Google Scholar 

  17. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  18. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mogilevskaya, S., Crouch, S., La Grotta, A., Stolarski, H.: The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Compos. Sci. Technol. 70(3), 427–434 (2010)

    Article  Google Scholar 

  20. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Andreussi, F., Gurtin, M.E.: On the wrinkling of a free surface. J. Appl. Phys. 48(9), 3798–3799 (1977)

    Article  Google Scholar 

  23. Schiavone, P., Ru, C.Q.: Integral equation methods in plane-strain elasticity with boundary reinforcement. Proc. R. Soc. A 454, 2223–2242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schiavone, P., Ru, C.Q.: The traction problem in a theory of plane strain elasticity with boundary reinforcement. Math. Mech. Solids 5(1), 101–115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chhapadia, P., Mohammadi, P., Sharma, P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 59(10), 2103–2115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, T., Chiu, M.S.: Effects of higher-order interface stresses on the elastic states of two-dimensional composites. Mech. Mater. 43(4), 212–221 (2011)

    Article  Google Scholar 

  27. Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33(6), 309–323 (2001)

    Article  Google Scholar 

  28. Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity. Contin. Mech. Thermodyn. 28(1–2), 407–422 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dai, M., Gharahi, A., Schiavone, P.: Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations. Appl. Math. Modell. 55, 160–170 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with steigmann-ogden interface: local fields, neutrality, and maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98 (2018)

    Article  Google Scholar 

  31. Zemlyanova, A.Y.: Frictionless contact of a rigid stamp with a semi-plane in the presence of surface elasticity in the Steigmann–Ogden form. Math. Mech. Solids 23(8), 1140–1155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zemlyanova, A.Y.: A straight mixed mode fracture with the Steigmann–Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65–86 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zemlyanova, A.Y.: The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack. Q. J. Mech. Appl. Math. 66(2), 199–219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, H., Hu, G., Huang, Z.: Effective moduli for micropolar composite with interface effect. Int. J. Solids Struct. 44(25–26), 8106–8118 (2007)

    Article  MATH  Google Scholar 

  35. Sigaeva, T., Schiavone, P.: Surface effects in anti-plane deformations of a micropolar elastic solid: integral equation methods. Contin. Mech. Thermodyn. 28(1), 105–118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sigaeva, T., Schiavone, P.: Influence of boundary elasticity on a couple stress elastic solid with a mode-III crack. Quart. J. Mech. Appl. Math. 68(2), 195–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gharahi, A., Schiavone, P.: Plane micropolar elasticity with surface flexural resistance. Contin. Mech. Thermodyn. 30(3), 675–688 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Intarit, P., Senjuntichai, T., Rajapakse, R.K.N.D.: Dislocations and internal loading in a semi-infinite elastic medium with surface stresses. Eng. Fract. Mech. 77(18), 3592–3603 (2010). (Computational mechanics in fracture and damage: a special issue in Honor of Prof. Gross)

    Article  Google Scholar 

  39. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

Schiavone thanks the Natural Sciences and Engineering Research Council of Canada for its support through a Discovery Grant (Grant No: RGPIN – 2017 - 03716115112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schiavone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharahi, A., Schiavone, P. Edge dislocation with surface flexural resistance in micropolar materials. Acta Mech 230, 1513–1527 (2019). https://doi.org/10.1007/s00707-018-2338-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2338-5

Navigation