Skip to main content
Log in

Delamination influence on elastic properties of laminated composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present work aims to predict the behavior of effective elastic properties for laminated composites, considering localized damage in the interface between two layers. In practical terms, the damage in the adhesion, which influences the effective elastic properties of a laminate, is evaluated like a delamination between adjacent layers. Thus, the effective properties of laminated composites with different delamination extensions are calculated via finite element method and two-scale asymptotic homogenization method. It is investigated how the properties of the laminated composites are affected by the delamination extension and the thickness of the interface between layers. It is possible to conclude that the effective coefficient values decrease as the damage extension increases due to the fact that the delamination area increases. Besides, for all effective coefficients, except the effective coefficients \(C_{12}^*\), \(C_{13}^*\), and \(C_{23}^*\), in the case without delamination, the coefficients decrease as the adhesive region thickness increases, and almost all coefficients decrease for complete separation of the interface. Numerical and analytical results are compared in order to show the potentialities and limitations of the proposed approaches. Finally, a numerical approach is used to simulate a specific case, where the interface is considered a functionally graded material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashari, S.E., Mohammadi, S.: Delamination analysis of composites by new orthotropic bimaterial extended finite element method. Int. J. Numer. Methods Eng. 86, 1507–43 (2011)

    Article  MATH  Google Scholar 

  2. Aghdam, M.M., Falahatgar, S.R.: Micromechanical modeling of interface damage of metal matrix composites subjected to transverse loading. Comput. Struct. 66, 415–20 (2004)

    Article  Google Scholar 

  3. Bonora, N., Ruggiero, A.: Micromechanical modeling of composites with mechanical interface—Part II: damage mechanics assessment. Compos. Sci. Technol. 66, 323–32 (2006)

    Article  Google Scholar 

  4. Aghdam, M.M., Falahatgar, S.R., Gorji, M.: Micromechanical consideration of interface damage in fiber reinforced Ti-alloy under various combined loading conditions. Compos. Sci. Technol. 68, 3406–11 (2008)

    Article  Google Scholar 

  5. Fang, Q.H., Jin, B., Liu, Y., Liu, Y.W.: Interaction between screw dislocations and inclusions with imperfect interfaces in fiber-reinforced composites. Acta Mech. 203, 113–125 (2009)

    Article  MATH  Google Scholar 

  6. Mahmoodi, M.J., Aghdam, M.M., Shakeri, M.: Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading. Mater. Des. 31, 829–36 (2010)

    Article  Google Scholar 

  7. Escarpini Filho, R.S., Marques, S.P.C.: A model for homogenization of linear viscoelastic periodic composite materials with imperfect interface. Lat. Am. J. Solids Struct. 13, 2706–2735 (2016)

    Article  Google Scholar 

  8. Almeida, J.H.S., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: experimental and numerical approaches. Mater. Des. 96, 431–38 (2016)

    Article  Google Scholar 

  9. Almeida, J.H.S., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression. Compos. Struct. 160, 204–210 (2017)

    Article  Google Scholar 

  10. Voyiadjis, G.Z., Kattan, P.I.: Introducing damage mechanics templates for the systematic and consistent formulation of holistic material damage models. Acta Mech. 228, 951–990 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lu, H., Guo, L., Liu, G. et al.: Progressive damage investigation of 2.5D woven composites under quasi-static tension. Acta Mech. (2018). https://doi.org/10.1007/s00707-017-2024-z

  12. Yam, L.H., Wei, Z., Cheng, L., Wong, W.O.: Numerical analysis of multi-layer composite plates with internal delamination. Comput. Struct. 82, 627–37 (2004)

    Article  Google Scholar 

  13. Alfaro, M.V.C., Suiker, A.S.J., Borst, R., Remmers, J.J.C.: Analysis of fracture and delamination in laminates using 3D numerical modelling. Eng. Fract. Mech. 76, 761–80 (2009)

    Article  Google Scholar 

  14. Wang, R.G., Zhang, L., Zhang, J., Liu, W.B., He, X.D.: Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method. Comput. Mater. Sci. 50, 20–31 (2010)

    Article  Google Scholar 

  15. Simon, J.W., Stier, B., Reese, S.: Numerical analysis of layered fiber composites accounting for the onset of delamination. Adv. Eng. Softw. 80, 4–11 (2015)

    Article  Google Scholar 

  16. Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S., De, AK.: Delamination effect on flexural responses of layered curved shallow shell panel-experimental and numerical analysis. Int. J. Comput. Methods (2017). https://doi.org/10.1142/S0219876218500275

  17. Thai, T.Q., Rabczuk, T., Zhuang, X.: Numerical study for cohesive zone model in delamination analysis based on higher-order B-spline functions. J. Micromech. Mol. Phys. (2017). https://doi.org/10.1142/S2424913017500047

  18. Tran, Q.T., Toumi, A., Turatsinze, A.: Delamination of thin bonded cement-based overlays: analytical analysis. Mater. Struct. 44, 43–51 (2011)

    Article  Google Scholar 

  19. Song, M.C., Sankar, B.V., Subhash, G., Yen, C.F.: Analysis of mode I delamination of z-pinned composites using a non-dimensional analytical model. Composites Part B 43, 1776–84 (2012)

    Article  Google Scholar 

  20. Kargarnovin, M.H., Ahmadian, M.T., Jafari-Talookolaei, R.-A., Abedi, M.: Semi-analytical solution for the free vibration analysis of generally laminated composite Timoshenko beams with single delamination. Composites Part B 45, 587–600 (2013)

    Article  Google Scholar 

  21. Ojo, S.O., Ismail, S.O., Paggi, M., Dhakal, H.N.: A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation. Composites Part B 124, 207–17 (2017)

    Article  Google Scholar 

  22. Saoudi, J., Zitoune, R., Gururaja, S., Salem, M., Mezleni, S.: Analytical and experimental investigation of the delamination during drilling of composite structures with core drill made of diamond grits: X-ray tomography analysis. J. Compos. Mater. 52, 1281–1294 (2017)

    Article  Google Scholar 

  23. Brito-Santana, H., De Medeiros, R., Ferreira, A.J.M., Rodríguez-Ramos, R., Tita, V.: Effective elastic properties of layered composites considering non-uniform imperfect adhesion. Appl. Math. Model. 59, 183–204 (2018)

    Article  MathSciNet  Google Scholar 

  24. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, New York (1978)

    MATH  Google Scholar 

  25. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory (Lecture Notes in Physics, 127). Springer Verlag, Berlin (1980)

    Google Scholar 

  26. Oleinik, O.A., Panasenko, G.P.: Homogenization and asymptotic expansions for solutions of the elasticity system with rapidly oscillating periodic coefficients. Appl. Anal. 15, 15–32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic Publishers, Dordrecht (1989)

    Book  MATH  Google Scholar 

  28. Fang, Z., Sun, W., Tzeng, J.T.: Asymptotic homogenization and numerical implementation to predict the effective mechanical properties for electromagnetic composite conductor. J. Compos. Mater. 38, 1371–85 (2004)

    Article  Google Scholar 

  29. Hassani, B., Hinton, E.: A review of homogenization and topology optimization II- analytical and numerical solutions of homogenization equations. Comput. Struct. 69, 719–38 (1998)

    Article  MATH  Google Scholar 

  30. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: The Basis, vol. 1. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  31. Bezanson, A., Karpinski, S., Shan, V.B., Edelman, A.: Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145 (2012), 292

  32. Hughes, T.J.R.: The Finite Element Method—Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New Jersey (1987)

    MATH  Google Scholar 

  33. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in and pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–31 (2009)

    Article  MATH  Google Scholar 

  34. Tita, V., Carvalho, J., Vandepitte, D.: Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches. Compos. Struct. 83, 413–28 (2008)

    Article  Google Scholar 

  35. Verbis, J.T., Kattis, S.E., Tsinopoulos, S.V., Polyzos, D.: Wave dispersion and attenuation in fiber composites. Comput. Mech. 27, 244–52 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Brito-Santana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito-Santana, H., Christoff, B.G., Mendes Ferreira, A.J. et al. Delamination influence on elastic properties of laminated composites. Acta Mech 230, 821–837 (2019). https://doi.org/10.1007/s00707-018-2319-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2319-8

Navigation