Skip to main content
Log in

Infinitesimal deformations and stability of rods made of nonlocal elastic materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Aim of the paper is the formulation of a criterion of infinitesimal stability for a class of rods made of nonlocal elastic materials. To that end, the nonlinear equilibrium equations of naturally straight, inextensible rods subject to terminal loads are written, and the constitutive equation assumed to represent the material response in rods of finite length is discussed. Then, the equations describing the infinitesimal deformations superimposed upon a finite one are deduced. The expression of the work done by the increments of the external loads associated with an infinitesimal deformation is employed to formulate, for the considered rods, the criterion of infinitesimal stability which does not require the existence of a stored-energy function. The criterion is applied to study the stability of simply supported rods subject to axial forces, of rods with one end clamped and the other one constrained to have the tangent parallel to the undeformed rod axis, subject to axial forces and twisting couples, and of annular rods formed from naturally straight rods with the addition of twist. The results show that rods made of nonlocal elastic materials exhibit a reduction in rigidity with respect to rods having the same geometry and made of usual elastic materials with the same tensile and shear moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: synthesis, characterizations, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  Google Scholar 

  2. Akita, S.: Nanomechanical applications of CNT. In: Matsumoto, Z. (ed.) Frontiers of Graphene and Carbon Nanotubes, Devices and Applications, pp. 187–200. Springer, Tokyo (2015)

    Google Scholar 

  3. Kaushik, B.K., Majumder, M.K.: Carbon Nanotube: Properties and Application. In: Kaushik, B.K., Majumder, M.K. (eds.) Carbon Nanotube Based VLSI Interconnects, pp. 17–37. Springer, Berlin (2015)

    Google Scholar 

  4. Eringen, A.C.: Vistas of nonlocal continuum physics. Int. J. Eng. Sci. 30, 1551–1565 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  6. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  7. Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  8. Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  9. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)

    Article  MathSciNet  Google Scholar 

  10. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iijima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)

    Article  Google Scholar 

  12. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  13. Falvo, M.R., Clary, G.J., Taylor II, R.M., Chi, V., Brooks Jr., F.P., Washburn, S., Superfine, R.: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997)

    Article  Google Scholar 

  14. Yakobson, B.I., Avouris, P.: Mechanical properties of carbon nanotubes. In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds.) Carbon Nanotubes. Topis Appl. Phys., vol. 80, pp. 287–327. Spinger, Berlin (2001)

    Chapter  Google Scholar 

  15. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  16. Sinir, B.G., Özhan, B.B., Reddy, J.N.: Buckling configurations and dynamic response of buckled Euler–Bernoulli beams with non-classical supports. Lat. Am. J. Solids Struct. 11, 2516–2536 (2014)

    Article  Google Scholar 

  17. Challamel, N., Camotin, D., Wang, C.M., Zhang, Z.: On lateral-torsional buckling of discrete elastic systems: a nonlocal approach. Eur. J. Mech. A/Solids 49, 106–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Challamel, N., Kocsis, A., Wang, C.M.: Discrete and non-local elastica. Int. J. Non-linear Mech. 77, 128–140 (2015)

    Article  Google Scholar 

  19. Wang, C.M., Xiang, Y., Kitipornchai, S.: Postbuckling of nano rods/tubes based on nonlocal beam theory. Int. J. Appl. Mech. 1, 259–266 (2009)

    Article  Google Scholar 

  20. Xu, S.P.: Elastica type buckling analysis of micro/nano-rods using nonlocal elasticity theory. In: Proceedings of Second Asian Conference on Mechanics of Functional Materials and Structures, Nanjing, pp. 219–222 (2010)

  21. Xu, S.P., Xu, M.R., Wang, C.M.: Stability analysis of nonlocal elastic columns with initial imperfections. Math. Probl. Eng. 2013, 341232 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Lembo, M.: On nonlinear deformations of nonlocal elastic rods. Int. J. Solids Struct. 90, 215–227 (2016)

    Article  Google Scholar 

  23. Lembo, M.: Exact solutions for post-buckling deformations of nanorods. Acta Mech. 228, 2283–2298 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lembo, M.: Exact equilibrium solutions for nonlinear spatial deformations of nanorods with application to buckling under terminal force and couple. Int. J. Solids Struct. 135, 274–288 (2018)

    Article  Google Scholar 

  25. Kirchhoff, G.: Über das Gleichgewicht und die Bewegug eines unendlich dünnen elastichen Stabes. J. f. reine. angew. Math. (Crelle) 56, 285–313 (1859)

    Google Scholar 

  26. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, Reprint of the Fourth Edition. Dover Publications, New York (1944)

    Google Scholar 

  27. Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Poisson, S.D.: Sur les lignes élastiques à double courbure. Correspondence sur l’École Royale Polytechnique Tome Troisième, 355–360 (1816)

    Google Scholar 

  30. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1937)

    MATH  Google Scholar 

  31. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  32. Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Romano, G., Barretta, R., Diaco, M., Marotti-deSciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Article  Google Scholar 

  34. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, New York (1965)

    MATH  Google Scholar 

  35. Wang, C.C., Truesdell, C.: Introduction to Rational Elasticity. Noordhoff, Leyden (1973)

    MATH  Google Scholar 

  36. Gurtin, M., Spector, S.J.: On stability and uniqueness in finite elasticity. Arch. Ration. Mech. Anal. 70, 153–165 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Spector, S.J.: On uniqueness in finite elasticity with general loading. J. Elast. 10, 145–161 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Spector, S.J.: On uniqueness for the traction problem in finite elasticity. J. Elast. 12, 367–383 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hadamard, J.: Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique. Hermann, Paris (1903)

    MATH  Google Scholar 

  40. Knops, R.J., Wilkes, E.W.: In: Truesdell, C. (ed.) Theory of Elastic Stability, Mechanics of Solids, vol. III. Springer, Berlin (1984)

  41. Lembo, M.: On the stability of elastic annular rods. Int. J. Solids Struct. 40, 317–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sudak, L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  Google Scholar 

  43. Challamel, N., Wang, C.M.: On lateral-torsional buckling of non-local beams. Adv. Appl. Math. Mech. 3, 389–398 (2010)

    MathSciNet  Google Scholar 

  44. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)

    Book  MATH  Google Scholar 

  45. Greenhill, A.G.: On the strength of shafting when exposed both to torsion and to end thrust. In: Proceedings of the Institution of Mechanical Engineers, pp. 182–209 (1883)

  46. Timoshenko, S.T., Gere, J.M.: Theory of Elastic Stability, 2nd edn. McGraw-Hill, London (1961)

    Google Scholar 

  47. Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzio Lembo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lembo, M. Infinitesimal deformations and stability of rods made of nonlocal elastic materials. Acta Mech 230, 749–769 (2019). https://doi.org/10.1007/s00707-018-2315-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2315-z

Mathematics Subject Classification

Navigation