Skip to main content
Log in

Micromechanics modeling of the elastic moduli of rGO/ANF nanocomposites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Energy storage materials that also provide structural integrity are needed to decrease the weight of electrically powered ground and air vehicles. Toward this end, structural supercapacitor electrodes consisting of aramid nanofiber (ANF) and reduced graphene oxide (rGO) were reported in our previous work. Surprisingly, the experimentally measured tensile moduli of these rGO/ANF nanocomposites were not bounded by the experimentally measured moduli of the ANF and rGO materials and were an order of magnitude lower than those of Kevlar fibers and graphene sheets. The purpose of the present work is to develop a micromechanics model for elastic moduli to support the development of rGO/ANF multifunctional composite electrodes. Both the ANF and the rGO are transversely isotropic, wavy and randomly oriented, and no traditional isotropic polymeric matrix is present. We are aware of no existing micromechanics model that is applicable to such a composite. The Mori–Tanaka model is used three times, to model the rGO and ANF separately, and then the rGO/ANF composite films. The model predictions of elastic moduli were compared with experimental results. Waviness was found to be the main factor controlling the effective composite moduli, due to the extreme anisotropy of the rGO. This implies that the effective elastic moduli of rGO/ANF composites can be considerably increased by developing processing methods that reduce waviness. The experimentally observed unbounded moduli were attributed to the relationship between waviness and the volume fraction of the ANF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwon, S.R., Harris, J., Zhou, T., Loufakis, D., Boyd, J.G., Lutkenhaus, J.L.: Mechanically strong graphene/aramid nanofibers composite electrodes for structural energy and power. ACS Nano 11, 6682–6690 (2017)

    Article  Google Scholar 

  2. Snyder, J., Gienger, E., Wetzel, E.: Performance metrics for structural composites with electrochemical multifunctionality. J. Compos. Mater. 49, 1835–1848 (2015)

    Article  Google Scholar 

  3. Shirshova, N., Qian, H., Shaffer, M.S.P., Steinke, J.H.G., Greenhalgh, E.S., Curtis, P.T., Kucernak, A., Bismarck, A.: Structural composite supercapacitors. Compos. Part A Appl. Sci. Manuf. 46, 96–107 (2013)

    Article  Google Scholar 

  4. Asp, L.E., Greenhalgh, E.S.: Structural power composites. Compos. Sci. Technol. 101, 41–61 (2014)

    Article  Google Scholar 

  5. Carlson, T., Ordéus, D., Wysocki, M., Asp, L.E.: Structural capacitor materials made from carbon fibre epoxy composites. Compos. Sci. Technol. 70, 1135–1140 (2010)

    Article  Google Scholar 

  6. Carlson, T., Asp, L.E.: Structural carbon fibre composite/PET capacitors—effects of dielectric separator thickness. Compos. Part B Eng. 49, 16–21 (2013)

    Article  Google Scholar 

  7. Qian, H., Kucernak, A.R., Greenhalgh, E.S., Bismarck, A., Shaffer, M.S.P.: Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. ACS Appl. Mater. Interfaces 5, 6113–6122 (2013)

    Article  Google Scholar 

  8. Ke, Q., Wang, J.: Graphene-based materials for supercapacitor electrodes—a review. J. Mater. 2, 37–54 (2016)

    Google Scholar 

  9. Yoon, Y., Lee, K., Baik, C., Yoo, H., Min, M., Park, Y., Lee, S.M., Lee, H.: Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors. Adv. Mater. 25, 4437–4444 (2013)

    Article  Google Scholar 

  10. Kuo, C.M., Takahashi, K., Chou, T.W.: Effect of fiber waviness on the nonlinear elastic behavior of flexible composites. J. Compos. Mater. 22, 1004–1025 (1988)

    Article  Google Scholar 

  11. Chou, T.W., Takahashi, K.: Non-linear elastic behaviour of flexible fibre composites. Composites 18, 25–34 (1987)

    Article  Google Scholar 

  12. Yanase, K., Moriyama, S., Ju, J.W.: Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mech. 224, 1351–1364 (2013)

    Article  Google Scholar 

  13. Ansari, R., Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J.: Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites. Acta Mech. 227, 3475–3495 (2016)

    Article  MathSciNet  Google Scholar 

  14. Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 80, 4647–4649 (2002)

    Article  Google Scholar 

  15. Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250 (2004)

    Article  Google Scholar 

  16. Tandon, G.P., Weng, G.J.J.: Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol. 27, 111–132 (1986)

    Article  Google Scholar 

  17. Sakthivel, M., Arockiarajan, A.: Thermo-electro-mechanical response of 1-3-2 piezoelectric composites: effect of fiber orientations. Acta Mech. 223, 1353–1369 (2012)

    Article  MathSciNet  Google Scholar 

  18. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  19. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  Google Scholar 

  20. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  MathSciNet  Google Scholar 

  21. Weng, G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  Google Scholar 

  22. Gavazzi, A.C., Lagoudas, D.C.: On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Comput. Mech. 7, 13–19 (1990)

    Article  Google Scholar 

  23. Seidel, G.D., Lagoudas, D.C.: A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites. J. Compos. Mater. 43, 917–941 (2009)

    Article  Google Scholar 

  24. Christensen, R.M.: Mechanics of Composite Materials. Krieger Pub. Co, Malabar (1991)

    Google Scholar 

  25. Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005)

    Article  MathSciNet  Google Scholar 

  26. Ting, T.C.T.: Anisotropic Elasticity Theory and Applications. Oxford University Press, Oxford (1996)

    Book  Google Scholar 

  27. Huang, H., Talreja, R.: Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 65, 1964–1981 (2005)

    Article  Google Scholar 

  28. Wan, C., Frydrych, M., Chen, B.: Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7, 6159 (2011)

    Article  Google Scholar 

  29. Cao, G.: Guoxin: atomistic studies of mechanical properties of graphene. Polymers 6, 2404–2432 (2014)

    Article  Google Scholar 

  30. Yao, J., Bastiaansen, C., Peijs, T.: High strength and high modulus electrospun nanofibers. Fibers 2, 158–186 (2014)

    Article  Google Scholar 

  31. Nakamae, K., Nishino, T.: Integration of Fundamental Polymer Science and Technology. Springer, Berlin (1991)

    Google Scholar 

  32. Yao, J., Jin, J., Lepore, E., Pugno, N.M., Bastiaansen, C.W.M., Peijs, T.: Electrospinning of \(p\)-aramid fibers. Macromol. Mater. Eng. 300, 1238–1245 (2015)

    Article  Google Scholar 

  33. Sockalingam, S., Gillespie, J.W., Keefe, M.: On the transverse compression response of Kevlar KM2 using fiber-level finite element model. Int. J. Solids Struct. 51, 2504–2517 (2014)

    Article  Google Scholar 

  34. McAllister, Q.P., Gillespie, J.W., VanLandingham, M.R.: Evaluation of the three-dimensional properties of Kevlar across length scales. J. Mater. Res. 27, 1824–1837 (2012)

    Article  Google Scholar 

  35. Andres Leal, A., Deitzel, J.M., Gillespie, J.W.: Assessment of compressive properties of high performance organic fibers. Compos. Sci. Technol. 67, 2786–2794 (2007)

    Article  Google Scholar 

  36. Kawabata, S.: Measurement of the transverse mechanical properties of high-performance fibres. J. Text. Inst. 81, 432–447 (1990)

    Article  Google Scholar 

  37. DuPont: Kevlar technical guide H-77848 4/00. http://www.dupont.com/content/dam/dupont/products-and-services/fabrics-fibers-and-nonwovens/fibers/documents/DPT_Kevlar_Technical_Guide_Revised.pdf. Accessed 10 Oct 2017

  38. Graphenea: Reduced graphene oxide. https://www.graphenea.com/products/reduced-graphene-oxide-1-gram. Accessed 10 Oct 2017

  39. Ansari, R., Ajori, S., Motevalli, B.: Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct. 51, 274–289 (2012)

    Article  Google Scholar 

  40. Mortazavi, B., Ahzi, S.: Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon 63, 460–470 (2013)

    Article  Google Scholar 

  41. Zhang, Y.Y., Wang, C.M., Cheng, Y., Xiang, Y.: Mechanical properties of bilayer graphene sheets coupled by \(\text{ sp }^{3}\) bonding. Carbon 49, 4511–4517 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Boyd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Boyd, J.G., Lutkenhaus, J.L. et al. Micromechanics modeling of the elastic moduli of rGO/ANF nanocomposites. Acta Mech 230, 265–280 (2019). https://doi.org/10.1007/s00707-018-2298-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2298-9

Navigation