Skip to main content
Log in

Effect of initial stress on the propagation and attenuation characteristics of Rayleigh waves

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present investigation deals with the mathematical modelling and analytical thinking to uncover the various facets of the propagation of Rayleigh waves in an Earth’s crustal layer. This work has been carried out when the wave is passing through a pre-stressed anisotropic layer of finite thickness, lying over a semi-infinite medium with void pores. The upper boundary plane of the crustal layer has been thought to be a free surface. Displacement components of the wave for both the media have been derived analytically. Appropriate boundary conditions have been well satisfied with the aid of displacement and stress factors in order to get the desired dispersion relation. A comparative study has been performed graphically taking anisotropic, orthotropic and isotropic strata, in order to show the impact of initial stress and thickness on the propagation characteristics of Rayleigh waves. The present work may establish a program to connect theoretical results with subject area applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rayleigh, J.W.S.: On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 17, 4–11 (1885)

    Article  MathSciNet  Google Scholar 

  2. Ewing, W.M., Jardetsky, W.S., Press, F.: Elastic Waves in Layered Media. McGraw-Hill, New York (1957)

    Book  Google Scholar 

  3. Brekhovskikh, L.M.: Waves in Layered Media. Academic Press, New York (1960)

    Google Scholar 

  4. Kennet, B.L.: Seismic Wave Propagation in Stratified Media. Cambridge University Press, New York (1983)

    Google Scholar 

  5. Nayfeh, A.H.: Wave Propagation in Layered Anisotropic Media. Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  6. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland/American Elsevier, Amsterdam/New York (1973)

    MATH  Google Scholar 

  7. Pilant, W.L.: Elastic Waves in the Earth. Elsevier, Amsterdam (1979)

    Google Scholar 

  8. Bullen, K.E., Bolt, B.A.: An Introduction to the Theory of Seismology. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  9. Synge, J.L.: Elastic waves in anisotropic media. J. Math. Phys. 41, 323–334 (1957)

    MathSciNet  MATH  Google Scholar 

  10. Dutta, S.: Rayleigh wave propagation in a two layer anisotropic media. Pure Appl. Geophys. 60(1), 51–60 (1965)

    Article  Google Scholar 

  11. Sharma, M.D., Gogna, M.L.: Wave propagation in anisotropic liquid-saturated porous solids. J. Acoust. Soc. Am. 90, 1068–1073 (1991)

    Article  Google Scholar 

  12. Nayfeh, A.H.: The general problem of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 89(4), 1521–1531 (1991)

    Article  Google Scholar 

  13. Vinh, P.C., Hue, T.T.T.: Rayleigh waves with impedance boundary conditions in anisotropic solids. Wave Motion 51, 1082–1092 (2014)

    Article  MathSciNet  Google Scholar 

  14. Tanuma, K., Man, C.S., Chen, Y.: Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress. Int. J. Eng. Sci. 92, 63–82 (2015)

    Article  MathSciNet  Google Scholar 

  15. Pal, P.C., Kumar, S., Bose, S.: Propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy medium. Ain Shams Eng. J. 6, 621–627 (2015)

    Article  Google Scholar 

  16. Biot, M.A.: The influence of initial stress on elastic waves. J. Appl. Phys. 2, 522–530 (1940)

    Article  MathSciNet  Google Scholar 

  17. Chattopadhyay, A., Mahata, N.P., Keshri, A.: Rayleigh wave in a medium under initial stresses. Acta Geophys. 34(1), 57–62 (1986)

    Google Scholar 

  18. Singh, B.: Wave propagation in a prestressed piezoelectric half-space. Acta Mech. 211(3), 337–344 (2010)

    Article  Google Scholar 

  19. Abd-Alla, A.M., Abo-Dahab, S.M., Hammad, H.A.H.: Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under initial stress and gravity field. Appl. Math. Model. 35(6), 2981–3000 (2011)

    Article  MathSciNet  Google Scholar 

  20. Sharma, A., Gupta, I.S.: Rayleigh waves in prestressed medium. Int. J. Research. Sci. Tech. 1(V), (2012)

  21. Zhang, R., Pang, Y., Feng, W.: Propagation of Rayleigh waves in a magneto-electro-elastic half-space with initial stress. Mech. Adv. Mat. Struct. 21(7), 538–543 (2014)

    Article  Google Scholar 

  22. Pandit, D.K., Kundu, S., Gupta, S.: Propagation of Love waves in a pre-stressed Voigt-type viscoelastic orthotropic functionally graded layer over a porous half-space. Acta Mech. 228(3), 871–880 (2017)

    Article  MathSciNet  Google Scholar 

  23. Nunziato, J.W., Cowin, S.C.: A non-linear theory of elastic material with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    Article  Google Scholar 

  24. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)

    Article  Google Scholar 

  25. Chandrasekharaiah, D.S.: Rayleigh–Lamb waves in an elastic plate with voids. J. Appl. Mech. 54, 509–512 (1987)

    Article  Google Scholar 

  26. Tomar, S.K.: Wave propagation in a micropolar elastic plate with voids. J. Vib. Cont. 11, 849–863 (2005)

    MATH  Google Scholar 

  27. Iesan, D.: On a theory of thermo-viscoelastic materials with voids. J. Elast. 104(1), 369–384 (2011)

    Article  MathSciNet  Google Scholar 

  28. Singh, J., Tomar, S.K.: Plane waves in a rotating generalized thermo-elastic solid with voids. Int. J. Eng. Sci. Technol. 3(2), 34–41 (2011)

    MathSciNet  Google Scholar 

  29. Vishwakarma, S.K., Gupta, S.: Rayleigh wave propagation: a case wise study in a layer over a half space under the effect of rigid boundary. Arch. Civil Mech. Eng. 14, 181–189 (2014)

    Article  Google Scholar 

  30. Biot, M.A.: Mechanics of Incremental Deformation. Wiley, New York (1965)

    Book  Google Scholar 

  31. Weiskopf, W.H.: Stresses in soils under a foundation. J. Franklin Inst. 239, 445–465 (1945)

    Article  MathSciNet  Google Scholar 

  32. Ke, L.L., Wang, Y.S., Zhang, Z.M.: Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties. Soil Dyn. Earthquake Eng. 26(6–7), 574–581 (2006)

    Article  Google Scholar 

  33. Rasolofosaon, P.N., Zinszner, B.E.: Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks. Geophysics 67(1), 230–240 (2002)

    Article  Google Scholar 

  34. Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15(2), 167–183 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Maity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Maity, M., Pandit, D.K. et al. Effect of initial stress on the propagation and attenuation characteristics of Rayleigh waves. Acta Mech 230, 67–85 (2019). https://doi.org/10.1007/s00707-018-2283-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2283-3

Navigation