Skip to main content
Log in

Heat-pulse propagation in thermoelastic systems: application to graphene

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We study the consequences of thermoelastic coupling on heat and stress pulse propagation along equilibrium and nonequilibrium reference states. We use a generalized heat-transport equation accounting for relaxational and nonlinear effects. We compare the obtained results with those for heat pulses without thermoelastic coupling and with previous results obtained by using the relaxational Maxwell–Cattaneo equation for the heat flux without nonlinear terms. The difference of the speed of heat pulses along and against an imposed average heat flux in nonequilibrium states is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowacki, W.: Thermoelasticity, second edn. Pergamon, Oxford (1986)

    MATH  Google Scholar 

  2. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford Science Publications, Oxford (2010)

    MATH  Google Scholar 

  3. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  Google Scholar 

  4. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    Book  Google Scholar 

  5. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, second edn. Springer, New York (1998)

    Book  Google Scholar 

  6. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  Google Scholar 

  7. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)

    Book  Google Scholar 

  8. Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)

    Article  Google Scholar 

  9. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, fourth revised edn. Springer, Berlin (2010)

    Book  Google Scholar 

  10. Tzou, D .Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, second edn. Wiley, Chichester (2014)

    Google Scholar 

  11. Guo, Y., Wang, M.: Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015)

    Article  MathSciNet  Google Scholar 

  12. Sellitto, A., Cimmelli, V. A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems, vol. 6 of SEMA-SIMAI Springer Series. Springer (2016)

  13. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  14. Popov, E.B.: Dynamic coupled problem of thermoelasticity for a half-space taking account of the finiteness of the heat propagation velocity. J. Appl. Math. Mech. 31, 349–356 (1967)

    Article  Google Scholar 

  15. Achenbach, J.D.: The influence of heat conduction on propagating stress jumps. J. Mech. Phys. Solids 16, 272–282 (1968)

    Article  Google Scholar 

  16. Nayfeh, A., Nemat-Nasser, S.: Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12, 53–69 (1971)

    Article  Google Scholar 

  17. Sinha, A.N., Sinha, S.B.: Velocity of Rayleigh waves with thermal relaxation in time. Acta Mech. 23, 159–166 (1975)

    Article  Google Scholar 

  18. Sawatzky, R.P., Moodie, T.B.: On thermoelastic transients in a general theory of heat conduction with finite wave speeds. Acta Mech. 56, 165–187 (1985)

    Article  MathSciNet  Google Scholar 

  19. Sharma, J.N., Singh, H.: Generalized thermoelastic waves in anisotropic media. J. Acoust. Soc. Am. 85, 1407–1413 (1989)

    Article  Google Scholar 

  20. Hawwa, M.A., Nayfeh, A.H.: Thermoelastic waves in a laminated composite with a second sound effect. J. Appl. Phys. 80, 2733–2738 (1996)

    Article  Google Scholar 

  21. Verma, K.L., Hasebe, N.: Wave propagation in transversely isotropic plates in generalized thermoelasticity. Arch. Appl. Mech. 72, 470–482 (2002)

    Article  Google Scholar 

  22. Puri, P., Jordan, P.M.: On the propagation of harmonic plane waves under the two-temperature theory. Int. J. Eng. Sci. 44, 1113–1126 (2006)

    Article  MathSciNet  Google Scholar 

  23. Kumar, R., Mukhopadhyay, S.: Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity. Int. J. Eng. Sci. 48, 128–139 (2010)

    Article  MathSciNet  Google Scholar 

  24. Prasad, R., Kumar, R., Mukhopadhyay, S.: Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags. Int. J. Eng. Sci. 48, 2028–2043 (2010)

    Article  MathSciNet  Google Scholar 

  25. Liu, W., Chen, M.: Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback. Cont. Mech. Thermodyn. 29, 731–746 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Xu, X.: Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107–114 (2001)

    Article  Google Scholar 

  27. Jun Yu, Y., Tian, X.-G., Xiong, Q.-L.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A-Solid. 60, 238–253 (2016)

    Article  MathSciNet  Google Scholar 

  28. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (2009)

    Article  Google Scholar 

  29. Jou, D., Cimmelli, V.A., Sellitto, A.: Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys. Lett. A 373, 4386–4392 (2009)

    Article  Google Scholar 

  30. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (2010)

    Article  Google Scholar 

  31. Yao, W.-J., Cao, B.-Y.: Thermal wave propagation in graphene studied by molecular dynamics simulations. Chin. Sci. Bull. 59, 3495–3503 (2004)

    Article  Google Scholar 

  32. Cepellotti, A., Fugallo, G., Paulatto, L., Lazzeri, M., Mauri, F., Marzari, N.: Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015)

    Article  Google Scholar 

  33. Yao, W.-J., Cao, B.-Y.: Triggering wave-domain heat conduction in graphene. Phys. Lett. A 380, 2105–2110 (2016)

    Article  Google Scholar 

  34. Balandin, A.A., Ghosh, S., Baoand, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.-N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  35. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  Google Scholar 

  36. Nika, D .L., Balandin, A .A.: Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012)

    Google Scholar 

  37. Pop, E., Varshney, V., Roy, A.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Article  Google Scholar 

  38. Tang, Q.H., Liu, X.L., Chen, C., Wang, T.C.: A constitutive equation of thermoelasticity for solid materials. J. Therm. Stresses 38, 359–376 (2015)

    Article  Google Scholar 

  39. Shen, L., Shen, H.-S., Zhang, C.-L.: Temperature-dependent elastic properties of single layer graphene sheets. Mater. Des. 31, 4445–4449 (2010)

    Article  Google Scholar 

  40. Unnikrishnan, V.U., Unnikrishnan, G.U., Reddy, J.N.: Multiscale nonlocal thermo-elastic analysis of graphene nanoribbons. J. Therm. Stresses 32, 1087–1100 (2009)

    Article  Google Scholar 

  41. Jackson, H.E., Walker, C.T.: Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys. Rev. B 3, 1428–1439 (1971)

    Article  Google Scholar 

  42. Coleman, B.D., Newman, D.C.: Implications of a nonlinearity in the theory of second sound in solids. Phys. Rev. B 37, 1492–1498 (1988)

    Article  Google Scholar 

  43. Tarkenton, G.M., Cramer, M.S.: Nonlinear second sound in solids. Phys. Rev. B 49, 794–798 (1994)

    Article  Google Scholar 

  44. Jou, D., Casas-Vázquez, J.: Nonequilibrium absolute temperature, thermal waves and phonon hydrodynamics. Physica A 163, 47–58 (1990)

    Article  Google Scholar 

  45. Luzzi, R., Vasconcellos, A.R., Casas-Vázquez, J., Jou, D.: Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics. Physica A 234, 699–714 (1997)

    Article  Google Scholar 

  46. Casas-Vázquez, J., Jou, D.: Temperature in nonequilibrium states: a review of open problems and current proposals. Rep. Progr. Phys. 66, 1937–2023 (2003)

    Article  Google Scholar 

  47. Jou, D., Restuccia, L.: Caloric and entropic temperatures in non-equilibrium steady states. Physica A 460, 246–253 (2016)

    Article  MathSciNet  Google Scholar 

  48. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  Google Scholar 

  49. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MathSciNet  Google Scholar 

  50. Coleman, B.D., Fabrizio, M., Owen, D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Rational Mech. Anal. 80, 135–158 (1982)

    Article  MathSciNet  Google Scholar 

  51. Racke, R., Wang, Y.-G.: Propagation of singularities in one-dimensional thermoelasticity. J. Math. Anal. Appl. 223, 216–247 (1998)

    Article  MathSciNet  Google Scholar 

  52. Jeffrey, A., Taniuti, T.: Nonlinear Wave Propagation. Academic, New York (1964)

    MATH  Google Scholar 

  53. Qiu, B., Ruan, X.: Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 100, 193101 (2012)

    Article  Google Scholar 

  54. Shao, T., Wen, B., Melnik, R., Yao, S., Kawazoe, Y., Tian, Y.: Temperature dependent elastic constants and ultimate strength of graphene and graphene. J. Chem. Phys. 137, 194901 (2012)

    Article  Google Scholar 

  55. Memarian, F., Fereidoon, A., Darvish Ganji, M.: Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 85, 348–356 (2015)

    Article  Google Scholar 

  56. Liu, X., Metcalf, T.H., Robinson, J.T., Houston, B.H., Scarpa, F.: Shear modulus of monolayer graphene prepared by chemical vapor deposition. Nano Lett. 12, 1013–1017 (2012)

    Article  Google Scholar 

  57. Yoon, D., Son, Y.-W., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11, 3227–3231 (2011)

    Article  Google Scholar 

  58. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011)

    Article  Google Scholar 

  59. Wang, M., Yang, N., Guo, Z.-Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)

    Article  Google Scholar 

  60. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: General expression for entropy production in transport processes based on the thermomass model. Phys. Rev. E 85, 061107 (2012)

    Article  Google Scholar 

  61. Sellitto, A., Cimmelli, V.A.: Flux Limiters in radial heat transport in silicon nanolyers. J. Heat Trans. - T. ASME. 136, 071301 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

A. S. cordially thanks the Department of Physics of the Autonomous University of Barcelona (Spain) for the received hospitality in the period from April 18 to 29, 2017. A. S. acknowledges the University of Salerno for the financial supports under grant no. 300395FRB16CIARL and grant “Fondo per il finanziamento iniziale dell’attività di ricerca”. V. A. C. acknowledges the financial support of the University of Basilicata under grants RIL 2013 and RIL 2015. Both authors also acknowledge the Italian National Group of Mathematical Physics (GNFM-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Cimmelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellitto, A., Cimmelli, V.A. Heat-pulse propagation in thermoelastic systems: application to graphene. Acta Mech 230, 121–136 (2019). https://doi.org/10.1007/s00707-018-2274-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2274-4

Navigation