Skip to main content
Log in

The size-dependent analysis of microplates via a newly developed shear deformation theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work deals with considering the small-scale effects on the static bending, vibrational behavior and buckling analysis of a simply supported microplate based on the newly developed shear deformation plate theory. This theory includes two unknown functions and meets the shear and couple-free conditions on the top and bottom surfaces of the plate without any shear correction factor. Hamilton’s principle and the modified couple stress theory are applied to obtain the governing equations and corresponding boundary conditions. Navier’s approach is used to analytically obtain the deflections, natural frequencies and critical buckling loads of the microplate. The reliability of the presented formulation in this paper is studied through comparison with previous existing data. It is revealed that the presented theory is comparable to the other shear deformation theories. Also, numerical results of this work demonstrate that the proposed theory predicts lower natural frequencies and critical buckling loads compared to the other theories because of the lower stiffness of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Koiter, W.: Couple stresses in the theory of elasticity. Proc. Kon. Ned. Akad. van Wetensch. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  2. Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, F., Chong, A., Lam, D.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  5. Aifantis, E.C.: Gradient effects at macro, micro, and nano scales. J. Mech. Behav. Mater. 5(3), 355–375 (1994)

    Article  Google Scholar 

  6. Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  9. Eringen, A.C.: Theory of micropolar plates. Z. Angew. Math. Phys. ZAMP 18(1), 12–30 (1967)

    Article  Google Scholar 

  10. Park, S., Gao, X.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)

    Article  Google Scholar 

  11. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46(13), 2757–2764 (2009)

    Article  MATH  Google Scholar 

  12. Tsiatas, G.C., Yiotis, A.J.: Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech. 226(4), 1267–1281 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yin, L., Qian, Q., Wang, L., Xia, W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sin. 23(5), 386–393 (2010)

    Article  Google Scholar 

  14. Ma, H., Gao, X.-L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1), 217–235 (2011)

    Article  MATH  Google Scholar 

  15. Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J. Sound Vib. 331(1), 94–106 (2012)

    Article  Google Scholar 

  16. Lou, J., He, L.: Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory. Compos. Struct. 131, 810–820 (2015)

    Article  Google Scholar 

  17. Kirchhoff, G.: Ueber die Schwingungen einer kreisförmigen elastischen Scheibe. Ann. Phys. 157(10), 258–264 (1850)

    Article  Google Scholar 

  18. Kirchhoff, G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik. 850(40), 51–88 (1850)

    Google Scholar 

  19. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  20. Szilard, R.: Theory and Analysis of Plates: Classical and Numerical Method. Prentice-Hall. Englewood Cliffs, New Jersey (1974)

    MATH  Google Scholar 

  21. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  22. Irschik, H., Heuer, R.: Analogies for simply supported nonlocal Kirchhoff plates of polygonal planform. Acta Mech. 229(2), 867–879 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bolle, L.: Contribution au problème linéaire de flexion d’une plaque élastique. Rouge (1948)

  24. Hencky, H.: Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Arch. Appl. Mech. 16(1), 72–76 (1947)

    MATH  Google Scholar 

  25. Uflyand, Y.S.: The propagation of waves in the transverse vibrations of bars and plates. Akad. Nauk. SSSR Prikl. Mat. Mech. 12(287–300), 8 (1948)

    MathSciNet  Google Scholar 

  26. Mindlin, R.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  27. Timoshenko, S.P.: LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(245), 744–746 (1921)

    Article  Google Scholar 

  28. Timoshenko, S.P.: X. On the transverse vibrations of bars of uniform cross-section. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(253), 125–131 (1922)

    Article  Google Scholar 

  29. Irschik, H., Heuer, R., Ziegler, F.: Statics and dynamics of simply supported polygonal Reissner–Mindlin plates by analogy. Arch. Appl. Mech. 70(4), 231–244 (2000)

    Article  MATH  Google Scholar 

  30. Naghdi, P.: On the theory of thin elastic shells. Q. Appl. Math. 14(4), 369–380 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  31. Westmann, R.: Bending plates on an elastic foundation. J. Appl. Mech. ASME 84, 369–374 (1962)

    Google Scholar 

  32. Reddy, J.: A general non-linear third-order theory of plates with moderate thickness. Int. J. Non Linear Mech. 25(6), 677–686 (1990)

    Article  MATH  Google Scholar 

  33. Jemielita, G.: On kinematical assumptions of refined theories of plates: a survey. J. Appl. Mech. 57(4), 1088–1091 (1990)

    Article  Google Scholar 

  34. Jemielita, G.: Direct and variational methods in forming theories of plates. Arch. Mech. 44(3), 299–311 (1992)

    MATH  Google Scholar 

  35. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  36. Ferreira, A., Roque, C., Jorge, R.: Analysis of composite plates by trigonometric shear deformation theory and multiquadrics. Comput. Struct. 83(27), 2225–2237 (2005)

    Article  Google Scholar 

  37. Soldatos, K.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3), 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Karama, M., Afaq, K., Mistou, S.: Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. solids Struct. 40(6), 1525–1546 (2003)

    Article  MATH  Google Scholar 

  39. Shimpi, R., Patel, H.: A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43(22–23), 6783–6799 (2006)

    Article  MATH  Google Scholar 

  40. Chen, W., Xu, M., Li, L.: A model of composite laminated Reddy plate based on new modified couple stress theory. Compos. Struct. 94(7), 2143–2156 (2012)

    Article  Google Scholar 

  41. Chong, A., Yang, F., Lam, D.C.C., Tong, P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16(04), 1052–1058 (2001)

    Article  Google Scholar 

  42. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  43. Darijani, H., Mohammadabadi, H.: A new deformation beam theory for static and dynamic analysis of microbeams. Int. J. Mech. Sci. 89, 31–39 (2014)

    Article  Google Scholar 

  44. Darijani, H., Shahdadi, A.: A new shear deformation model with modified couple stress theory for microplates. Acta Mech. 226(8), 2773 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gao, X.-L., Huang, J., Reddy, J.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224(11), 2699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Thai, H.-T., Kim, S.-E.: A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B Eng. 45(1), 1636–1645 (2013)

    Article  Google Scholar 

  47. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Google Scholar 

  48. Jomehzadeh, E., Noori, H., Saidi, A.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E Low Dimens. Syst. Nanostructures 43(4), 877–883 (2011)

    Article  Google Scholar 

  49. Thai, H.-T., Choi, D.-H.: Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)

    Article  Google Scholar 

  50. He, L., Lou, J., Zhang, E., Wang, Y., Bai, Y.: A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory. Compos. Struct. 130, 107–115 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Darijani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahreman, M., Darijani, H. & Bahrani Fard, A. The size-dependent analysis of microplates via a newly developed shear deformation theory. Acta Mech 230, 49–65 (2019). https://doi.org/10.1007/s00707-018-2260-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2260-x

Navigation