Skip to main content
Log in

On stability in the thermoelastostatics of dipolar bodies

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Our study is concerned with the initial boundary value problem in the context of the thermoelastostatics of dipolar bodies. We will derive a result which describes the exponential spatial decay of solutions of this problem. We will also find a superior limit for the amplitude, which is dependent on the initial and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choudhuri, S.K.R.: On a thermoelastic three-phase-lag model. J. Thermal Stresses 30(3), 231–238 (2007)

    Article  Google Scholar 

  2. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  Google Scholar 

  3. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  Google Scholar 

  4. Iesan, D., Ciarletta, M.: Non-Classical Elastic Solids, Longman Scientific and Technical, Harlow, Essex. Wiley, New York (1993)

    Google Scholar 

  5. Marin, M., Agarwal, R.P., Mahmoud, S.R.: Modeling a microstretch thermo-elastic body with two temperatures. Abstr. Appl. Anal. 2013, 1–7 (2013). Art. ID 583464

    Article  Google Scholar 

  6. Marin, M.: Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng. 2008, 1–8 (2008). Art. No. 158908

    Article  MathSciNet  Google Scholar 

  7. Marin, M., Baleanu, D.: On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound. Value Probl. 111, 1–19 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Marin, M.: An approach of a heat-flux dependent theory for micropolar porous media. Meccanica 51(5), 1127–1133 (2016)

    Article  MathSciNet  Google Scholar 

  9. Straughan, B.: Heat waves. In: Straughan, B. (ed.) Applied Mathematical Sciences, vol. 177, Springer, New York (2011)

  10. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  11. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  Google Scholar 

  12. Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253–271 (2007)

    Article  MathSciNet  Google Scholar 

  13. Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen. Springer, Berlin (2018)

    Book  Google Scholar 

  14. Horgan, C.O.: Recent developments concerning Saint–Venants principle: an update. Appl. Mech. Rev. 42, 295–303 (1989)

    Article  MathSciNet  Google Scholar 

  15. Horgan, C.O.: Recent developments concerning Saint–Venants principle: a second update. Appl. Mech. Rev. 49, 101–111 (1996)

    Article  Google Scholar 

  16. Bofill, F., Quintanilla, R.: Thermal influence on the decay of end effects in linear elasticity. Supplemento di Rendiconti del Circolo Matematico di Palermo 57, 57–62 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Quintanilla, R.: End effects in thermoelasticity. Math. Methods Appl. Sci. 24, 93–102 (2001)

    Article  MathSciNet  Google Scholar 

  18. Quintanilla, R., Straughan, B.: Growth and uniqueness in thermoelasticity. Proc. R. Soc. Lond. A 456, 1419–1429 (2000)

    Article  MathSciNet  Google Scholar 

  19. Ames, K.A., Payne, L.E.: Continuous dependence on initial-time geometry for a thermoelastic system with sign-indefinite elasticities. J. Math. Anal. Appl. 189, 693–714 (1995)

    Article  MathSciNet  Google Scholar 

  20. Ames, K.A., Straughan, B.: Continuous dependence results for initially prestressed thermoelastic bodies. Int. J. Eng. Sci. 30, 7–13 (1992)

    Article  MathSciNet  Google Scholar 

  21. Ames, K.A., Straughan, B.: Non-Standard and Improperly Posed Problems. Academic Press, San Diego (1997)

    Google Scholar 

  22. Wilkes, N.S.: Continuous dependence and instability in linear thermoelasticity. SIAM J. Math. Anal. 11, 292–299 (1980)

    Article  MathSciNet  Google Scholar 

  23. Fichera, G.: Linear Elliptic Differential System and Eigenvalue Problems, Lectures Notes in Mathematics. Springer (1965)

  24. Marin, M., Öchsner, A.: Essentials of Partial Differential Equations. Springer, Cham (2018)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Öchsner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A. & Baleanu, D. On stability in the thermoelastostatics of dipolar bodies. Acta Mech 229, 4267–4277 (2018). https://doi.org/10.1007/s00707-018-2237-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2237-9

Navigation