Acta Mechanica

, Volume 229, Issue 10, pp 4167–4186 | Cite as

Uncertainty static analysis of structures with hybrid spatial random and interval properties

  • Yanlin Zhao
  • Zhongmin DengEmail author
  • Zhaopu Guo
Original Paper


A novel uncertainty static analysis of an engineering structure with hybrid random and interval system parameters is proposed in this paper. Unlike traditional static structure analysis with hybrid uncertainties, the spatial variability of the material parameters is taken into account. Within this approach, the random field theory rather than random variables is employed to model the spatial variability, and interval variables are adopted to quantify the non-probabilistic uncertainty associated with objective limited information. Moreover, the proposed method provides a non-sampling hybrid uncertainty analysis framework, in which the explicit formulations are effectively established to calculate the lower and upper bounds of the second-order statistical moments interval of the concern responses. Finally, numerical examples are analyzed to validate the feasibility and effectiveness of the proposed method, which is also utilized to highlight the influence on the structure responses caused by the random field introduced parameters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China (Grant No. 11772018).


  1. 1.
    Moens, D., Vandepitte, D.: Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch. Comput. Methods Eng. 13, 389–464 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhang, M.Q.: Comparison of uncertainty models in reliability analysis of offshore structures under marine corrosion. Struct. Saf. 32, 425–432 (2010)CrossRefGoogle Scholar
  3. 3.
    Kang, Z., Luo, Y., Li, A.: On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Struct. Saf. 33, 196–205 (2011)CrossRefGoogle Scholar
  4. 4.
    Elishakoff, I., Ren, Y.J., Shinozuka, M.: Improved finite element method for stochastic problems. Chaos Solitons Fractals 5, 833–846 (1995)CrossRefGoogle Scholar
  5. 5.
    Gao, W., Kessissoglou, N.J.: Dynamic response analysis of stochastic truss structures under non-stationary random excitation using the random factor method. Comput. Methods Appl. Mech. Eng. 196, 2765–2773 (2007)CrossRefGoogle Scholar
  6. 6.
    Zadeh, L.A.: Fuzzy sets *. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  7. 7.
    Cherki, A., Plessis, G., Lallemand, B., Tison, T., Level, P.: Fuzzy behavior of mechanical systems with uncertain boundary conditions. Comput. Methods Appl. Mech. Eng. 189, 863–873 (2000)CrossRefGoogle Scholar
  8. 8.
    Benhaim, Y.: Convex models of uncertainty in radial pulse buckling of shells. J. Appl. Mech. 60, 683–688 (1993)CrossRefGoogle Scholar
  9. 9.
    Jiang, C., Han, X., Lu, G.Y.: Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput. Methods Appl. Mech. Eng. 200, 2528–2546 (2011)CrossRefGoogle Scholar
  10. 10.
    Moens, D., Vandepitte, D.: A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Methods Appl. Mech. Eng. 194, 1527–1555 (2005)CrossRefGoogle Scholar
  11. 11.
    Chowdhury, M.S., Song, C., Gao, W.: Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method. Eng. Fract. Mech. 78, 2369–2389 (2011)CrossRefGoogle Scholar
  12. 12.
    Henriques, A.A., Veiga, J.M.C., Matos, J.A.C.: Uncertainty analysis of structural systems by perturbation techniques. Struct. Multidiscip. Optim. 35, 201–212 (2008)CrossRefGoogle Scholar
  13. 13.
    Ghanem, R.G., Spanos, P.D.: Spectral techniques for stochastic finite elements. Arch. Comput. Methods Eng. 4, 63–100 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Alibrandi, U., Impollonia, N., Ricciardi, G.: Probabilistic eigenvalue buckling analysis solved through the ratio of polynomial response surface. Comput. Methods Appl. Mech. Eng. 199, 450–464 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Qiu, Z.P., Wang, L.: The need for introduction of non-probabilistic interval conceptions into structural analysis and design. Sci. China Phys. Mech. 59, 114632 (2016)CrossRefGoogle Scholar
  16. 16.
    Muscolino, G., Sofi, A.: Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab. Eng. Mech. 28, 152–163 (2012)CrossRefGoogle Scholar
  17. 17.
    Wang, L., Liu, D., Yang, Y., Wang, X., Qiu, Z., Wang, L.: A novel method of non-probabilistic reliability-based topology optimization corresponding to continuum structures with unknown but bounded uncertainties. Comput. Methods Appl. Mech. Eng. 326, 573–595 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, Y., Cai, Z., Liu, Y.: Interval analysis of dynamic response of structures using Laplace transform. Probab. Eng. Mech. 29, 32–39 (2012)CrossRefGoogle Scholar
  19. 19.
    Wang, L., Wang, X., Li, Y., Lin, G., Qiu, Z.: Structural time-dependent reliability assessment of the vibration active control system with unknown-but-bounded uncertainties. Struct. Control Health 24, 10 (2016)Google Scholar
  20. 20.
    Wang, L., Wang, X.J., Su, H., Lin, G.P.: Reliability estimation of fatigue crack growth prediction via limited measured data. Int. J. Mech. Sci. 121, 44–57 (2017)CrossRefGoogle Scholar
  21. 21.
    Gao, W., Song, C., Tin-Loi, F.: Probabilistic interval response and reliability analysis of structures with a mixture of random and interval properties. Comput. Model Eng. 46, 151–189 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Feng, J., Wu, D., Gao, W., Li, G.: Uncertainty analysis for structures with hybrid random and interval parameters using mathematical programming approach. Appl. Math. Model. 48, 208–232 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, C., Qiu, Z., Xu, M., Li, Y.: Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters. Appl. Math. Model. 47, 573–586 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Jiang, C., Li, W.X., Han, X., Liu, L.X., Le, P.H.: Structural reliability analysis based on random distributions with interval parameters. Comput. Struct. 89, 2292–2302 (2011)CrossRefGoogle Scholar
  25. 25.
    Guo, Z.P., Deng, Z.M., Li, X., Han, Y.: Hybrid uncertainty analysis for a static response problem of structures with random and convex parameters. Acta Mech. 228, 2987–3001 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Huang, S., Mahadevan, S., Rebba, R.: Collocation-based stochastic finite element analysis for random field problems. Probab. Eng. Mech. 22, 194–205 (2007)CrossRefGoogle Scholar
  27. 27.
    Mahadevan, S., Haldar, A.: Practical random field discretization in stochastic finite element analysis. Struct. Saf. 9, 283–304 (1991)CrossRefGoogle Scholar
  28. 28.
    Sudret, B., Kiureghian, A.D.: Comparison of finite element reliability methods. Probab. Eng. Mech. 17, 337–348 (2002)CrossRefGoogle Scholar
  29. 29.
    Spanos, P.D., Ghanem, R.: Stochastic finite element expansion for random media. J. Eng. Mech. 115, 1035–1053 (1989)CrossRefGoogle Scholar
  30. 30.
    Vanmarcke, E., Shinozuka, M., Nakagiri, S.: Random fields and stochastic finite elements. Struct. Saf. 3, 143–166 (1986)CrossRefGoogle Scholar
  31. 31.
    Verhaeghe, W., Desmet, W., Vandepitte, D.: Interval fields to represent uncertainty on the output side of a static FE analysis. Comput. Methods Appl. Mech. Eng. 260, 50–62 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Thomson, D.J.: Random fields: analysis and synthesis. Eos Trans. Am. Geophys. Union 64, 550–550 (1983)CrossRefGoogle Scholar
  33. 33.
    Wu, D., Gao, W.: Uncertain static plane stress analysis with interval fields. Int. J. Numer. Methods Eng. 110, 1272–1300 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wu, D.: Probabilistic interval stability assessment for structures with mixed uncertainty. Struct. Saf. 58, 105–118 (2016)CrossRefGoogle Scholar
  35. 35.
    Wu, D., Gao, W., Song, C., Tangaramvong, S.: Probabilistic interval stability assessment for structures with mixed uncertainty. Struct. Saf. 58, 105–118 (2016)CrossRefGoogle Scholar
  36. 36.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  37. 37.
    Qiu, Z.P., Elishakoff, I.: Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput. Methods Appl. Mech. Eng. 152, 361–372 (1988)CrossRefGoogle Scholar
  38. 38.
    Mcwilliam, S.: Anti-optimisation of uncertain structures using interval analysis. Comput. Struct. 79, 421–430 (2001)CrossRefGoogle Scholar
  39. 39.
    Sudret, B., der Kiureghian, A.: Stochastic finite element methods and reliability: a state-of-the-art report. Rep. No. UCB/SEMM-2000/08, University of California at Berkeley, USA (2000)Google Scholar
  40. 40.
    Stefanou, G.: The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng. 198, 1031–1051 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of AstronauticsBeihang University BeijingBeijingChina

Personalised recommendations