Acta Mechanica

, Volume 229, Issue 10, pp 4239–4250 | Cite as

Modeling droplet deformation through converging–diverging microchannels at low Reynolds number

  • Erfan KadivarEmail author
Original Paper


In this work, the deformation of a droplet flowing through planar diverging and converging channels connected by a narrow straight microchannel is studied numerically. The solution of the depth-averaged Brinkman equation is obtained numerically via a self-consistent integral equation using the boundary element method. The droplet experiences a converging/diverging radial flow field as it flows in/out of the straight channel. Therefore, droplet deformation strongly depends on channel diverging angle. Our numerical results indicate that the maximum deformation of the droplet depends on the droplet size and the modified capillary number, and the channel diverging angle can be scaled with power laws with exponents 3.00, 0.70, and 0.50, respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

707_2018_2225_MOESM1_ESM.gif (162 kb)
Supplementary material 1 (gif 162 KB)


  1. 1.
    Nguyen, N.T., Wereley, S.: Fundamentals and Applications of Microfluidics. Artech House, Boston (2002)zbMATHGoogle Scholar
  2. 2.
    Bremond, N., Thiam, A.R., Bibette, J.: Decompressing emulsion droplets favors coalescence. Phys. Rev. Lett. 100, 024501 (2008)CrossRefGoogle Scholar
  3. 3.
    Baret, J.C., Taly, V., Ryckelynck, M., Merten, C.A., Griffiths, A.D.: Droplets and emulsions: very high-throughput screening in biology. Med. Sci. 25, 627 (2009)Google Scholar
  4. 4.
    Kadivar, E.: Magnetocoalescence of ferrofluid droplets in a flat microfluidic channel. EPL (Europhys. Lett.) 106, 24003 (2014)CrossRefGoogle Scholar
  5. 5.
    Link, D.R., Anna, S.L., Weitz, D.A., Stone, H.A.: Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 (2004)CrossRefGoogle Scholar
  6. 6.
    Salkin, L., Schmit, A., Courbin, L., Panizza, P.: Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models. Lab Chip 13, 3022 (2013)CrossRefGoogle Scholar
  7. 7.
    Christopher, G.F., Noharuddin, N.N., Taylor, J.A., Anna, S.L.: Experimental observation of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78, 036317 (2008)CrossRefGoogle Scholar
  8. 8.
    De Menech, M., Garstecki, P., Jousse, F., Stone, H.A.: Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595, 141 (2008)CrossRefGoogle Scholar
  9. 9.
    Taylor, G.: The viscosity of a fluid containing small drops of another fluid. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 138, p. 41 (1932)CrossRefGoogle Scholar
  10. 10.
    Taylor, G.: The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. Ser. A 146, 501 (1934)CrossRefGoogle Scholar
  11. 11.
    Sibillo, V., Pasquariello, G., Simeone, M., Cristini, V., Guido, S.: Drop deformation in microconfined shear flow. Phys. Rev. Lett. 97, 054502 (2006)CrossRefGoogle Scholar
  12. 12.
    Mietus, W.G.P., Matar, O.K., Lawrence, C.J., Briscoe, B.J.: Droplet deformation in confined shear and extensional flow. Chem. Eng. Sci. 57, 1217 (2002)CrossRefGoogle Scholar
  13. 13.
    Bentley, B., Leal, L.: An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech. 167, 241 (1986)CrossRefGoogle Scholar
  14. 14.
    Brosseau, Q., Vrignon, J., Baret, J.-C.: Microfluidic dynamic interfacial tensiometry. Soft Matter 10, 3066–3076 (2014)CrossRefGoogle Scholar
  15. 15.
    Kadivar, E., Farrokhbin, M.: A numerical procedure for scaling droplet deformation in a microfluidic expansion channel. Physica A 479, 449 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Oliveira, M.S.N., Alves, M.A., Pinho, F.T., McKinley, G.H.: Viscous flow through microfabricated hyperbolic contractions. Exp. Fluids 43, 437 (2007)CrossRefGoogle Scholar
  17. 17.
    Ulloa, C., Ahumada, A., Cordero, M.L.: Effect of confinement on the deformation of microfluidic drops. Phys. Rev. E 89, 033004 (2014)CrossRefGoogle Scholar
  18. 18.
    Kadivar, E., Alizadeh, A.: Numerical simulation and scaling of droplet deformation in a hyperbolic flow. Eur. Phys. J. E 40, 31 (2017)CrossRefGoogle Scholar
  19. 19.
    Cogswell, F.N.: Measuring the extensional rheology of polymer melts. Trans. Soc. Rheol. 16, 383 (1972)CrossRefGoogle Scholar
  20. 20.
    Cogswell, F.N.: Converging flow and stretching flow: a compilation. J. Non Newton. Fluid Mech. 4, 23 (1978)CrossRefGoogle Scholar
  21. 21.
    James, D.F.: Flow in a converging channel at moderate Reynolds number. AIChE J 37, 59 (1991)CrossRefGoogle Scholar
  22. 22.
    Duryodhan, V.S., Singh, S.G., Agrawal, A.: Liquid flow through converging microchannels and a comparison with diverging microchannels. J. Micromech. Microeng. 24, 125002 (2014)CrossRefGoogle Scholar
  23. 23.
    Duryodhan, V.S., Singh, S.G., Agrawal, A.: Effect of cross aspect ratio on flow in diverging and converging microchannel. J. Fluids Eng. 139, 061203 (2017)CrossRefGoogle Scholar
  24. 24.
    Zografos, K., Pimenta, F., Alves, M.A., Oliveira, M.S.N.: Microfluidic converging/diverging channels optimised for homogeneous extensional deformation. Biomicrofluidics 10, 043508 (2016)CrossRefGoogle Scholar
  25. 25.
    Lettieri, G.L., Dodge, A., Boer, G., de Rooij, N.F., Verpoorte, E.: A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lab Chip 3, 34 (2003)CrossRefGoogle Scholar
  26. 26.
    Xuan, X., Li, D.: Particle motions in low-Reynolds number pressure-driven flows through convergingdiverging microchannels. J. Micromech. Microeng. 16, 62 (2006)CrossRefGoogle Scholar
  27. 27.
    Khayat, R.E., Luciani, A., Utracki, L.A., Godbille, F., Picot, J.: Influence of shear and elongation on drop deformation in convergent–divergent flows. Int. J. Multiph. Flow 26, 17 (2000)CrossRefGoogle Scholar
  28. 28.
    Cunha, L.H.P., Siqueira, I.R., Albuquerque, E.L., Oliveira, T.F.: Flow of emulsion drops through a constricted microcapillary channel. Int. J. Multiph. Flow 103, 141 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gallaire, F., Meliga, P., Laure, P., Baroud, C.N.: Marangoni induced force on a drop in a Hele Shaw cell. Phys. Fluids 26, 062105 (2014)CrossRefGoogle Scholar
  30. 30.
    Park, C.W., Homsy, M.: Two-phase displacement in hele shaw cells: theory. J. Fluid Mech. 139, 291 (1984)CrossRefGoogle Scholar
  31. 31.
    Pozrikidis, C.: A Practical Guide to Boundary Element Methods. CRC Press, Florida (2002)zbMATHGoogle Scholar
  32. 32.
    Kadivar, E., Herminghaus, S., Brinkmann, M.: Droplet sorting in a loop of flat microfluidic channels. J. Phys. Condens. Matter 25, 285102 (2013)CrossRefGoogle Scholar
  33. 33.
    Langlois, U.E., Deville, M.O.: Slow Viscous Flow. Springer International Publishing, Switzerland (2014)CrossRefGoogle Scholar
  34. 34.
    Rallison, J.M.: The deformation of small viscous drops and bubbles in shear flows. Ann. Rev. Fluid Mech. 16, 45 (1984)CrossRefGoogle Scholar
  35. 35.
    Cabral, J.T., Hudson, S.D.: Microfluidic approach for rapid multicomponent interfacial tensiometry. Lab Chip 6, 427 (2006)CrossRefGoogle Scholar
  36. 36.
    Ratulowski, J., Chang, H.-C.: Transport of gas bubbles in capillaries. Phys. Fluids A 1(10), 1642 (1989)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Cubaud, T.: Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows. Phys. Rev. E 80, 026307 (2009)CrossRefGoogle Scholar
  38. 38.
    Shapira, M., Haber, S.: Low Reynolds number motion of a droplet in shear flow including wall effects. Int. J. Multiphase Flow 16, 305 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShiraz University of TechnologyShirazIran

Personalised recommendations