Acta Mechanica

, Volume 229, Issue 10, pp 4057–4070 | Cite as

Wave non-reciprocity at a nonlinear structural interface

  • Keegan J. MooreEmail author
  • Alexander F. Vakakis
Original Paper


The principle of reciprocity is a basic feature of linear structural dynamics and acoustics. This work studies the passive break of reciprocity in two linear structural waveguides coupled by an unsymmetric nonlinear interface possessing mass, linear stiffness, and clearance nonlinearities. We show that the asymmetry and nonlinearity of the connection break reciprocity even with symmetric boundary conditions, and in some cases enable one-way transmission of propagating wavepackets in a preferential direction. A quantitative measure of non-reciprocity is introduced and applied to systematically study the effect of the clearance nonlinearities for two cases: an asymmetric system with dual identical clearance nonlinearities and an asymmetric system with dual unequal clearances. In the case of the asymmetric system with dual identical clearances, we demonstrate that the effectiveness of the non-reciprocity depends on whether incident waves at the structural interface encounter the clearance nonlinearities in series or in parallel. Finally, by considering interfaces with differing clearances, we show that it is possible to realize unidirectional propagation, i.e., preferential wave transmission in one direction and prevention of wave transmission in the reverse direction. These results demonstrate the efficacy of passively controlling the flow of energy in elastic waveguides using joints with clearance nonlinearities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank an anonymous reviewer for pointing out an error of interpretation in the original version of the paper, which was corrected in the final version of the manuscript.


This material is based upon work supported in part by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144245.


  1. 1.
    Helmholtz, H.V.: Theorie der Luftschwingungen in Röhren mit offenen Enden. Angew. Math. 57, 1–72 (1860)MathSciNetGoogle Scholar
  2. 2.
    Strutt, J.W.: Some general theorems relating to vibrations. Proc. Lond. Math. Soc. 1, 357–368 (1871)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Onsager, L.: Reciprocal relations in irreversible processes—I. Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar
  4. 4.
    Onsager, L.: Reciprocal relations in irreversible processes—II. Phys. Rev. 38, 2265–2279 (1931)CrossRefGoogle Scholar
  5. 5.
    Casimir, H.B.G.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945). CrossRefGoogle Scholar
  6. 6.
    Cummer, S.A.: Selecting the direction of sound transmission. Science 343, 495–496 (2014). CrossRefGoogle Scholar
  7. 7.
    Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R., Alù, A.: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014). CrossRefGoogle Scholar
  8. 8.
    Tsakmakidis, K.L., Shen, L., Schulz, S.A., Zheng, X., Upham, J., Deng, X., Altug, H., Vakakis, A.F., Boyd, R.W.: Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science 356, 1260–1264 (2017). MathSciNetCrossRefGoogle Scholar
  9. 9.
    Popa, B.-I., Cummer, S.A.: Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014). CrossRefGoogle Scholar
  10. 10.
    Fleury, R., Sounas, D.L., Alù, A.: Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev. B. 91, 174306 (2015). CrossRefGoogle Scholar
  11. 11.
    Liang, B., Guo, X.S., Tu, J., Zhang, D., Cheng, J.C.: An acoustic rectifier. Nat. Mater. 9, 989–992 (2010). CrossRefGoogle Scholar
  12. 12.
    Maznev, A.A., Every, A.G., Wright, O.B.: Reciprocity in reflection and transmission: What is a ‘phonon diode’? Wave Motion 50, 776–784 (2013). CrossRefGoogle Scholar
  13. 13.
    Maldovan, M.: Sound and heat revolutions in phononics. Nature 503, 209–217 (2013). CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Peng, B., Özdemir, Ş.K., Liu, Y., Jing, H., Lü, X., Liu, Y., Yang, L., Nori, F.: Giant nonlinearity via breaking parity-time symmetry: a route to low-threshold phonon diodes. Phys. Rev. B. 92, 115407 (2015). CrossRefGoogle Scholar
  15. 15.
    Zhang, Z., Koroleva, I., Manevitch, L.I., Bergman, L.A., Vakakis, A.F.: Non-reciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice. Phys. Rev. E. 94, 032214 (2016). MathSciNetCrossRefGoogle Scholar
  16. 16.
    Coulais, C., Sounas, D., Alù, A.: Static non-reciprocity in mechanical metamaterials. Nature 542, 461–464 (2017). CrossRefGoogle Scholar
  17. 17.
    Darabi, A., Leamy, M.J.: Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn. 87, 2127–2146 (2017)CrossRefGoogle Scholar
  18. 18.
    Moore, K.J., Bunyan, J., Tawfick, S., Gendelman, O.V., Shuangbao, L., Leamy, M.J., Vakakis, A.F.: Non-reciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry and scale hierarchy. Phys. Rev. E. 97, 012219 (2018)CrossRefGoogle Scholar
  19. 19.
    Bunyan, J., Moore, K.J., Mojahed, A., Fronk, M.D., Tawfick, S., Leamy, M., Vakakis, A.F.: Acoustic non-reciprocity in a lattice incorporating nonlinearity, asymmetry and internal scale hierarchy:experimental study. Phys. Rev. E. 97(5), 052211 (2018). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations