Skip to main content
Log in

An explanation of the drag reduction via polymer solute

  • Note
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The remarkable phenomenon of the drag reduction via addition of small amounts of polymer molecules to a Newtonian solvent was observed experimentally long ago. However, the theoretical explanations of this observation are not overwhelming yet. In this note, we present a possible theoretical account of the phenomenon. It is based on the use of the Navier–Stokes model with viscous strength for the solvent and the upper-convected Maxwell model for the polymer solute. Simple analytical calculation shows that the laminar flow of the solvent is stabilized by an addition of the polymer solute and, thus, the transition to the chaotic and slower on average turbulent motion is suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science 333, 192–196 (2011)

    Article  Google Scholar 

  2. Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1 (2016)

    Article  MathSciNet  Google Scholar 

  3. Boelens, A., Muthukumar, M.: Rotational relaxation time as unifying time scale for polymer and fiber drag reduction. Phys. Rev. E 93, 052503 (2016)

    Article  Google Scholar 

  4. Cadot, O., Bonn, D., Douady, S.: Turbulent drag reduction in a closed flow system: boundary layer versus bulk effects. Phys. Fluids 10, 426 (1998)

    Article  Google Scholar 

  5. Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  6. Dubief, Y., White, C., Terrapon, V.E., Sheqfeh, E.S.G., Moin, P., Lele, S.K.: On the coherent drag-reducing and turbulence-enhancing behavior of polymers in wall flows. J. Fluid Mech. 514, 271–280 (2004)

    Article  Google Scholar 

  7. Eckhardt, B.: A critical point for turbulence. Science 333, 165–166 (2011)

    Article  Google Scholar 

  8. Faisst, H., Eckhardt, B.: Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224501 (2003)

    Article  Google Scholar 

  9. Gupta, V.K., Sureshkumar, R., Khomami, B.: Polymer chain dynamics in Newtonian and viscoelastic turbulent channel flows. Phys. Fluids 16, 1546 (2004)

    Article  Google Scholar 

  10. Gyr, A., Bewersdorff, H.-W.: Drag Reduction of Turbulent Flows by Additives. Kluwer, Alphen aan den Rijn (1995)

    Book  Google Scholar 

  11. Hof, B., van Dorn, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Eckhardt, B., Wedin, H., Kerswell, R.R., Waleffe, F.: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 1594–1598 (2004)

    Article  Google Scholar 

  12. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)

    Google Scholar 

  13. Liberzon, A., Guala, M., Lüthi, B., Kinzelbach, W.: Turbulence in dilute polymer solutions. Phys. Fluids 17, 031707 (2005)

    Article  Google Scholar 

  14. Lumley, J.L.: Drag reduction by additives. Ann. Rev. Fluid Mech. 1, 367–383 (1969)

    Article  Google Scholar 

  15. Nadolnik, R.H., Haigh, W.W.: Bibliography on skin friction reduction with polymers and other boundary-layer additives. Appl. Mech. Rev. 48, 351–460 (1995)

    Article  Google Scholar 

  16. Oldroyd, J.G.: Proceedings 1st International Congress on Rheology vol. 2, pp. 130–134. North-Holland (1949)

  17. Perlin, M., Dowling, D., Ceccio, S.: Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 138, 091104 (2016)

    Article  Google Scholar 

  18. Phan-Thien, N.: Understanding Viscoelasticity: An Introduction to Rheology. Springer, Berlin (2013)

    Book  Google Scholar 

  19. Procaccia, I., Lvov, V., Benzi, R.: Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225 (2008)

    Article  Google Scholar 

  20. Ptasinski, P.K., Boersma, B.J., Hulsen, M.A., Nieuwstadt, F.T.M., Van Den Brule, B.H.A.A., Hunt, J.C.R.: Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251–291 (2003)

    Article  Google Scholar 

  21. Raghavan, B.V., Ostoja-Starzewski, M.: Shear-thinning of molecular fluids in Couette flow. Phys. Fluids 29, 023103 (2017)

    Article  Google Scholar 

  22. Tanner, R.I., Walters, K.: Rheology: An Historical Perspective. Elsevier, New York (1998)

    MATH  Google Scholar 

  23. Toms, B.A.: Observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: Proceeding of the 1st Int Congress on Rheology vol. 2, pp. 135–141. North-Holland (1949)

  24. Vlachogiannis, M., Liberatore, M.W., McHugh, A.J., Hanratty, T.J.: Effectiveness of a drag reducing polymer: relation to molecular weight distribution and structuring. Phys. Fluids 15, 3786 (2003)

    Article  Google Scholar 

  25. Volokh, K.Y.: An investigation into the stability of a shear thinning fluid. Int. J. Eng. Sci. 47, 740–743 (2009)

    Article  Google Scholar 

  26. Volokh, K.Y.: Navier–Stokes model with viscous strength. Comput. Model. Eng. Sci. 92, 87–101 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Wedin, H., Kerswell, R.R.: Exact coherent structures in pipe flow: wave solutions. J. Fluid Mech. 508, 333–371 (2004)

    Article  MathSciNet  Google Scholar 

  28. Wygnanski, I.J., Champagne, F.H.: On transition in a pipe Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335 (1973)

    Article  Google Scholar 

  29. Xi, L., Bai, X.: Marginal turbulent state of viscoelastic fluids: a polymer drag reduction perspective. Phys. Rev. E 93, 043118 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Volokh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volokh, K.Y. An explanation of the drag reduction via polymer solute. Acta Mech 229, 4295–4301 (2018). https://doi.org/10.1007/s00707-018-2206-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2206-3

Navigation