Skip to main content

Advertisement

Log in

A thermo-poroelasticity theory for infiltration processing of interpenetrating phase composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work describes a thermo-poroelasticity theory to investigate the effects of temperature gradients on infiltration kinetics, pore pressure distribution of the liquid phase, and liquid content variation due to preform deformation for infiltration processing of interpenetrating phase composites. Governing equations for three-dimensional infiltration processing are presented. A similarity solution is derived for one-dimensional infiltration assuming no solidification of the liquid phase. The solution indicates that besides the liquid viscosity, the infiltration front also depends on the poroelastic properties of the preform. A numerical example for a polymer–ceramic IPC shows that the temperature gradients may produce significant liquid content increment beyond the amount that can be accommodated by the initial pore volume of the preform. This liquid content increment may compensate some solidification shrinkage of the liquid phase, thereby suppressing occurrence of microdefects in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke, D.R.: Interpenetrating phase composites. J. Am. Ceram. Soc. 75, 739–759 (1992)

    Article  Google Scholar 

  2. Prielipp, H., Knechtel, M., Claussen, N., Streiffer, S.K., Mullejans, H., Ruhle, M., Rodel, J.: Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks. Mater. Sci. Eng. A 197, 19–30 (1995)

    Article  Google Scholar 

  3. Agrawal, P., Sun, C.T.: Fracture in metal–ceramic composites. Compos. Sci. Technol. 64, 1167–1178 (2004)

    Article  Google Scholar 

  4. Wang, F.C., Zhang, X., Wang, Y.W., Fan, Q.B., Li, G.J.: Damage evolution and distribution of interpenetrating phase composites under dynamic loading. Ceram. Int. 40, 13241–13248 (2014)

    Article  Google Scholar 

  5. Lee, J.H., Wang, L.F., Boyce, M.C., Thomas, E.L.: Periodic bicontinuous composites for high specific energy absorption. Nano Lett. 12, 4392–4396 (2012)

    Article  Google Scholar 

  6. Liu, S.B., Li, A.Q., He, S.Y., Xuan, P.: Cyclic compression behavior and energy dissipation of aluminum foam-polyurethane interpenetrating phase composites. Compos. Part A 78, 35–41 (2015)

    Google Scholar 

  7. Hong, C., Han, J., Zhang, X., Meng, S., Du, S.: Thermal ablation resistance of melt-infiltrated titanium diboride-(copper, nickel) composites. J. Alloys Compd. 460, 400–408 (2008)

    Article  Google Scholar 

  8. Jin, Z.H., Tohgo, K., Fujii, T., Shimamura, Y., Noda, N.: Periodic surface cracks in an interpenetrating phase composite under a thermal shock. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2017.02.021

    Article  Google Scholar 

  9. Colombo, P., Zordan, F., Medvedovski, E.: Ceramic–polymer composites for ballistic protection. Adv. Appl. Ceram. 105, 78–83 (2006)

    Article  Google Scholar 

  10. Taboasb, J.M., Maddoxb, R.D., Krebsbach, P.H., Hollister, S.J.: Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer–ceramic scaffolds. Biomaterials 24, 181–194 (2003)

    Article  Google Scholar 

  11. Coldea, A., Swain, M.V., Thiel, N.: Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 29, 419–426 (2013)

    Article  Google Scholar 

  12. Moon, R.J., Hoffman, M., Rodel, J., Tochino, S., Pezzoiti, G.: Evaluation of crack-tip stress fields on microstructural-scale fracture in \(\text{ Al }\)\({\text{ Al }_{2}}\text{ O }_{3}\) interpenetrating network composites. Acta Mater. 57, 570–581 (2009)

    Article  Google Scholar 

  13. Etter, T., Kuebler, J., Frey, T., Schulz, P., Loffler, J.F., Uggowitzer, P.J.: Strength and fracture toughness of interpenetrating graphite/aluminum composites produced by the indirect squeeze casting process. Mater. Sci. Eng. A 386, 61–67 (2004)

    Article  Google Scholar 

  14. Lu, Y., Yang, J., Lu, W., Liu, R., Qiao, G., Bao, C.: The mechanical properties of co-continuous Si\(_3\)N\(_4\)/Al composites manufactured by squeeze casting. Mater. Sci. Eng. A 527, 6289–6299 (2010)

    Article  Google Scholar 

  15. Hu, L.F., Kothalkar, A., O’Neil, M., Karaman, I., Radovic, M.: Current-activated, pressure-assisted infiltration: a novel versatile route for producing interpenetrating ceramic–metal composites. Mater. Res. Lett. 2, 124–130 (2014)

    Article  Google Scholar 

  16. Michaud, V.J., Sommer, J.L., Mortensen, A.: Infiltration of fibrous preforms by a pure metal: part V. influence of preform compressibility. Metall. Mater. Trans. A 30, 471–482 (1999)

    Article  Google Scholar 

  17. Jung, C.K., Jang, J.H., Han, K.S.: Numerical simulation of infiltration and solidification processes for squeeze cast Al composites with parametric study. Metall. Mater. Trans. A 39, 2736–2748 (2008)

    Article  Google Scholar 

  18. Ouahbi, T., Saouab, A., Breard, J., Ouagne, P., Chatel, S.: Modelling of hydro-mechanical coupling in infusion processes. Compos. Part A 38, 1646–1654 (2007)

    Article  Google Scholar 

  19. Ambrosi, D.: Infiltration through deformable porous media. Z. Angew. Math. Mech. 82, 115–124 (2002)

    Article  MathSciNet  Google Scholar 

  20. Larsson, R., Rouhi, M., Wysocki, M.: Free surface flow and preform deformation in composites manufacturing based on porous media theory. Eur. J. Mech. A/Solids 31, 1–12 (2012)

    Article  Google Scholar 

  21. McTigue, D.F.: Thermal response of fluid-saturated porous rock. J. Geophys. Res. 91, 9533–9542 (1986)

    Article  Google Scholar 

  22. Wang, H.F.: Theory of Linear Poroelasticity. Princeton University Press, Princeton (2000)

    Google Scholar 

  23. Noda, N., Hetnarski, R.B., Tanigawa, Y.: Thermal Stresses, 2nd edn. Taylor & Francis, New York (2003)

    Google Scholar 

  24. Michaud, V., Mortensen, A.: Infiltration processing of fibre reinforced composites: governing phenomena. Compos. Part A 32, 981–996 (2001)

    Article  Google Scholar 

  25. Kurashige, M.: A thermoelastic theory of fluid-filled porous materials. Int. J. Solids Struct. 25, 1039–1052 (1989)

    Article  Google Scholar 

  26. Pecker, C., Deresiewicz, H.: Thermal effects on wave propagation in liquid-filled porous media. Acta Mech. 16, 45–64 (1973)

    Article  Google Scholar 

  27. Jin, Z.H., Tohgo, K., Fujii, T., Shimamura, Y.: Double edge thermal crack problem for an interpenetrating phase composite: application of a matricity-based thermal conductivity model. Eng. Fract. Mech. 177, 167–179 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Maine Space Grant Consortium (MSGC) Research Infrastructure Program. The author would like to thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, ZH. A thermo-poroelasticity theory for infiltration processing of interpenetrating phase composites. Acta Mech 229, 3993–4004 (2018). https://doi.org/10.1007/s00707-018-2202-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2202-7

Navigation