Skip to main content
Log in

Chaotic enhanced colliding bodies algorithms for size optimization of truss structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Colliding bodies optimization (CBO) is a recently developed population-based metaheuristic algorithm that mimics the collision between two bodies, where the momentum conservation law is utilized to determine the new positions of the agents in the search space. To overcome some deficiencies in the CBO like slow convergence and getting trapped in local minima, an enhanced version of the algorithm, ECBO, is proposed. One of the efficient techniques to improve the performances of the metaheuristic algorithms is adding chaos to their structure. In this paper, chaos is incorporated into the ECBO through three types of embeddings and ten chaotic maps. Proposing different chaotic versions, finding the best version among chaotic versions and improving the efficiency of the standard CBO and ECBO are the main achievements of this study. The results of examining some mathematical and engineering problems show how some chaotic ECBO variants can enhance the performance of the standard ECBO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talbi, E.-G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  2. Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures, 2nd edn. Springer, Switzerland (2017)

    Book  MATH  Google Scholar 

  3. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  4. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95, pp. 39–43. IEEE (1995)

  5. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  7. Geem, Z.W.: Recent Advances in Harmony Search Algorithm, vol. 270. Springer, Berlin (2010)

    MATH  Google Scholar 

  8. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3), 267–289 (2010)

    Article  MATH  Google Scholar 

  9. Kaveh, A.: Ray optimization algorithm. In: Advances in Metaheuristic Algorithms for Optimal Design of Structures, pp. 233–276. Springer, Cham (2014)

  10. Kaveh, A., Farhoudi, N.: A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

    Article  Google Scholar 

  11. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014). https://doi.org/10.1016/j.compstruc.2014.04.005

    Article  Google Scholar 

  12. Blum, C., Roli, A., Sampels, M.: Hybrid Metaheuristics: An Emerging Approach to Optimization, vol. 114. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)

    Article  MATH  Google Scholar 

  14. Gharooni-fard, G., Moein-darbari, F., Deldari, H., Morvaridi, A.: Scheduling of scientific workflows using a chaos-genetic algorithm. Procedia Comput. Sci. 1(1), 1445–1454 (2010)

    Article  Google Scholar 

  15. Mingjun, J., Huanwen, T.: Application of chaos in simulated annealing. Chaos Solitons Fractals 21(4), 933–941 (2004)

    Article  MATH  Google Scholar 

  16. Alatas, B., Akin, E., Ozer, A.B.: Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4), 1715–1734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M.: Chaotic swarming of particles: a new method for size optimization of truss structures. Adv. Eng. Softw. 67, 136–147 (2014)

    Article  Google Scholar 

  18. Alatas, B.: Chaotic harmony search algorithms. Appl. Math. Comput. 216(9), 2687–2699 (2010)

    MATH  Google Scholar 

  19. Gandomi, A., Yang, X.-S., Talatahari, S., Alavi, A.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kohli, M., Arora, S.: Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. (2017). https://doi.org/10.1016/j.jcde.2017.02.005

  21. Talatahari, S., Kaveh, A., Sheikholeslami, R.: Chaotic imperialist competitive algorithm for optimum design of truss structures. Struct. Multidiscip. Optim. 46(3), 355–367 (2012)

    Article  Google Scholar 

  22. Talatahari, S., Kaveh, A., Sheikholeslami, R.: Engineering design optimization using chaotic enhanced charged system search algorithms. Acta Mech. 223(10), 2269–2285 (2012)

    Article  MATH  Google Scholar 

  23. Sheikholeslami, R., Kaveh, A.: A survey of chaos embedded meta-heuristic algorithms. Int. J. Optim. Civ. Eng. 3(4), 617–633 (2013)

    Google Scholar 

  24. Kaveh, A., Ilchi Ghazaan, M.: Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv. Eng. Softw. 77, 66–75 (2014)

    Article  Google Scholar 

  25. Kaveh, A., Mahdavi, V.R.: Colliding Bodies Optimization: Extensions and Applications. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  26. He, D., He, C., Jiang, L.-G., Zhu, H.-W., Hu, G.R.: Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(7), 900–906 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Devaney, R.L., Eckmann, J.-P.: An introduction to chaotic dynamical systems. Phys. Today 40, 72 (1987)

    Article  Google Scholar 

  28. Bucolo, M., Caponetto, R., Fortuna, L., Frasca, M., Rizzo, A.: Does chaos work better than noise? IEEE Circuit Syst. Mag. 2(3), 4–19 (2002)

    Article  Google Scholar 

  29. Erramilli, A., Singh, R., Pruthi, P.: Modeling Packet Traffic with Chaotic Maps. KTH, Stockholm (1994)

    MATH  Google Scholar 

  30. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  31. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Kaveh, A., Ilchi Ghazaan, M.: Computer codes for colliding bodies optimization and its enhanced version. Int. J. Optim. Civ. Eng. 4(3), 321–332 (2014)

    Google Scholar 

  33. Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design: With Applications, vol. 1. McGraw-Hill, New York (1984)

    MATH  Google Scholar 

  34. LRFD, A.: American Institute of Steel Construction (AISC). Load and Resistance Factor Design. AISC, Chicago (1994)

  35. Construction, A.: Manual of Steel Construction: Allowable Stress Design. American Institute of Steel Construction (AISC) Chicago (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials:

Supplementary data associated with this article containing all optimal design variables for different structures, chaotic maps and scenarios can be found in the online version. (pdf 47.3KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Dadras, A. & Montazeran, A.H. Chaotic enhanced colliding bodies algorithms for size optimization of truss structures. Acta Mech 229, 2883–2907 (2018). https://doi.org/10.1007/s00707-018-2149-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2149-8

Navigation