Advertisement

Acta Mechanica

, Volume 229, Issue 6, pp 2585–2595 | Cite as

A unified description of oblique waves in ideal and non-ideal steady supersonic flows around compressive and rarefactive corners

  • Stefano D’Angelo
  • Davide Vimercati
  • Alberto Guardone
Original Paper
  • 35 Downloads

Abstract

According to classical gas dynamic theory, if a steady supersonic parallel flow encounters a sudden change in the wall slope, two very different phenomena may occur. If the flow expands around a sharp corner, the well-known isentropic Prandtl–Meyer fan is observed. Conversely, a shock wave occurs if the flow is compressed: for wedge angles smaller than the detachment value, which depends on the uniform upstream state, an oblique shock originates at the corner; at larger deviation angles, a detached shock is formed. A unified description of these flows is presented here to extend the validity of the common \(\beta \)\(\vartheta \) (shock angle–deflection angle) diagram for shocked non-isentropic flows into the realm of isentropic expansions. The new graph allows for a straightforward identification of the wave angles for self-similar flow fields around compressive and rarefactive corners. Besides, it clarifies the relation between shock waves and rarefaction fans in the neighbourhood of the \({\vartheta =0}\) axis, where shock waves are weak enough to be fairly well approximated by isentropic compressions. At \({\vartheta =0}\), indeed, shock and rarefaction curves are demonstrated to be first order continuous. This result is interpreted in view of the bisector rule for oblique shock waves. Exemplary diagrams are reported for both ideal-gas flows, dilute-gas flows and non-ideal flows of dense vapours in the close proximity of the liquid–vapour saturation curve and critical point. The application of the new diagram is illustrated for the textbook case of the supersonic flow past a diamond-shaped airfoil.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bethe, H.A.: The theory of shock waves for an arbitrary equation of state. Technical paper 545, Office Sci. Res. & Dev. (1942)Google Scholar
  2. 2.
    Colonna, P., Guardone, A.: Molecular interpretation of nonclassical gasdynamics of dense vapors under the van der Waals model. Phys. Fluids 18(5), 056101-1–056101-14 (2006)CrossRefGoogle Scholar
  3. 3.
    Colonna, P., Guardone, A., Nannan, N.R.: Siloxanes: a new class of candidate Bethe–Zel’dovich–Thompson fluids. Phys. Fluids 19(10), 086102-1–086102-12 (2007)zbMATHGoogle Scholar
  4. 4.
    Cramer, M.S.: Negative nonlinearity in selected fluorocarbons. Phys. Fluids A 1(11), 1894–1897 (1989)CrossRefGoogle Scholar
  5. 5.
    Cramer, M.S.: Nonclassical dynamics of classical gases. In: Kluwick, A. (ed.) Nonlinear Waves in Real Fluids, pp. 91–145. Springer, New York (1991)CrossRefGoogle Scholar
  6. 6.
    Cramer, M.S., Best, L.M.: Steady, isentropic flows of dense gases. Phys. Fluids A 3(4), 219–226 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cramer, M.S., Crickenberger, A.B.: Prandtl–Meyer function for dense gases. AIAA J. 30(2), 561–564 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cramer, M.S., Fry, N.R.: Nozzle flows of dense gases. Phys. Fluids A 5(5), 1246–1259 (1993)CrossRefGoogle Scholar
  9. 9.
    Cramer, M.S., Kluwick, A.: On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 9–37 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cramer, M.S., Sen, R.: Shock formation in fluids having embedded regions of negative nonlinearity. Phys. Fluids 29, 2181–2191 (1986)CrossRefzbMATHGoogle Scholar
  11. 11.
    D’yakov, S.P.: On the stability of shock waves. Zh. Eksp. Teor. Fiz 27(3), 288–295 (1954)MathSciNetGoogle Scholar
  12. 12.
    Fowles, G.R.: Stimulated and spontaneous emission of acoustic waves from shock fronts. Phys. Fluids 24(2), 220–227 (1981)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73(2), 256–274 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guardone, A., Vimercati, D.: Exact solutions to non-classical steady nozzle flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 800, 278–306 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guardone, A., Zamfirescu, C., Colonna, P.: Maximum intensity of rarefaction shock waves for dense gases. J. Fluid Mech. 642, 127–146 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hayes, W.D.: The basic theory of gasdynamic discontinuities. In: Emmons, H.W. (ed.) Fundamentals of Gasdynamics, High Speed Aerodynamics and Jet Propulsion, vol. 3, pp. 416–481. Princeton University Press, Princeton (1958)Google Scholar
  17. 17.
    Kluwick, A.: Zur ausbreitung schwacher Stöße in dreidimensionalen instationären Strömungen. ZAMM 51(3), 225–232 (1971)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kluwick, A.: Transonic nozzle flow of dense gases. J. Fluid Mech. 247, 661–688 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kluwick, A.: Handbook of Shock Waves, chap. 3.4. Rarefaction shocks, pp. 339–411. Academic Press, New York (2001)Google Scholar
  20. 20.
    Kontorovich, V.M.: Concerning the stability of shock waves. Soviet Phys. JETP 6, 1179–1180 (1958)Google Scholar
  21. 21.
    Lambrakis, K.C., Thompson, P.A.: Existence of real fluids with a negative fundamental derivative \(\Gamma \). Phys. Fluids 15(5), 933–935 (1972)CrossRefGoogle Scholar
  22. 22.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press, Oxford (1987)zbMATHGoogle Scholar
  23. 23.
    Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference database 23: reference fluid thermodynamic and transport properties—REFPROP, version 9.1. Standard Reference Data Program (2013)Google Scholar
  24. 24.
    Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real material. Rev. Mod. Phys. 61(1), 75–130 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nannan, N.R., Guardone, A., Colonna, P.: Critical point anomalies include expansion shock waves. Phys. Fluids 26(2), 021701 (2014)CrossRefGoogle Scholar
  26. 26.
    Nannan, N.R., Sirianni, C., Mathijssen, T., Guardone, A., Colonna, P.: The admissibility domain of rarefaction shock waves in the near-critical vapour–liquid equilibrium region of pure typical fluids. J. Fluid Mech. 795, 241–261 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 k at pressures up to 100 MPa. J. Phys. Chem. Ref. Data 20(6), 1061–1155 (1991)CrossRefGoogle Scholar
  28. 28.
    Thompson, P.A.: A fundamental derivative in gasdynamics. Phys. Fluids 14(9), 1843–1849 (1971)CrossRefzbMATHGoogle Scholar
  29. 29.
    Thompson, P.A.: Compressible Fluid Dynamics. McGraw-Hill, New York (1988)Google Scholar
  30. 30.
    Thompson, P.A., Lambrakis, K.C.: Negative shock waves. J. Fluid Mech. 60, 187–208 (1973)CrossRefzbMATHGoogle Scholar
  31. 31.
    Weyl, H.: Shock waves in arbitrary fluids. Commun. Pure Appl. Math. 2(2–3), 103–122 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zamfirescu, C., Guardone, A., Colonna, P.: Admissibility region for rarefaction shock waves in dense gases. J. Fluid Mech. 599, 363–381 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zucrow, M.J., Hoffman, J.D.: Gas Dynamics, vol. 1976. Wiley, New York (1976)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace Science and TechnologyPolitecnico di MilanoMilanItaly

Personalised recommendations