Acta Mechanica

, Volume 229, Issue 6, pp 2539–2559

# Modification of the iterative method for solving linear viscoelasticity boundary value problems and its implementation by the finite element method

• Alexander Svetashkov
• Nikolay Kupriyanov
• Kayrat Manabaev
Original Paper

## Abstract

The problem of structural design of polymeric and composite viscoelastic materials is currently of great interest. The development of new methods of calculation of the stress–strain state of viscoelastic solids is also a current mathematical problem, because when solving boundary value problems one needs to consider the full history of exposure to loads and temperature on the structure. The article seeks to build an iterative algorithm for calculating the stress–strain state of viscoelastic structures, enabling a complete separation of time and space variables, thereby making it possible to determine the stresses and displacements at any time without regard to the loading history. It presents a modified theoretical basis of the iterative algorithm and provides analytical solutions of variational problems based on which the measure of the rate of convergence of the iterative process is determined. It also presents the conditions for the separation of space and time variables. The formulation of the iterative algorithm, convergence rate estimates, numerical computation results, and comparisons with exact solutions are provided in the tension plate problem example.

## References

1. 1.
Ataoglu, S.: A two dimensional mixed boundary-value problems in a viscoelastic medium. Struct. Eng. Mech. 32(3), 407–427 (2009)
2. 2.
Brinsoh, L.C., Knauss, W.G.: Finite element analysis of multiphase viscoelastic solids. J. Appl. Mech. 59(4), 730–727 (1992)
3. 3.
Carini, A., Gelfi, P., Marchina, E.: An energetic formulation for the linear viscoelastic problem. Part I: theoretical results and first calculations. Int. J. Numer. Methods Eng. 38(1), 37–62 (1995)
4. 4.
Chazal, C., Pitti, R.M.: Integral approach for time dependent materials finite element method. J. Theor. Appl. Mech. 49(4), 1029–1048 (2011)Google Scholar
5. 5.
Chazal, C., Pitti, R.M.: Modeling of ageing viscoelastic materials in three dimensional finite element approach. Mecc. Int. J. Theor. Appl. Mech. 45(3), 439–441 (2010)
6. 6.
Christensen, R.M.: Theory of Viscoelasticity, 2nd edn. Academic Press, New York (1982)Google Scholar
7. 7.
Cozzano, B.S., Rodriguez, B.S.: The Trefftz boundary method in viscoelasticity. Comput. Model. Eng. Sci. 20(1), 21–33 (2007)
8. 8.
Flugge, W.: Viscoelasticity. Blaisdell Press, New York (1967)
9. 9.
Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Mech. Anal. 11(1), 291–356 (1962)
10. 10.
Gurtin, M.E.: Variational principles in the linear theory of viscoelasticity. Ibid. 1(3), 179–191 (1963)
11. 11.
Lahellec, N.: Effective behavior of linear viscoelastic composites: a time integration approach. Int. J. Solids Struct. 44(2), 507–529 (2007)
12. 12.
Matveenko, V., Trufanov, N.: Multi-operator boundary value problems of viscoelasticity of piecewise-homogeneous bodies. J. Eng. Math. 78(1), 119–129 (2013)
13. 13.
Janovsky, V., Shaw, S., Wardy, M.K., Whiteman, J.R.: Numerical methods for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl. Math. 63(1–3), 91–107 (1995)
14. 14.
Pavlov, S.M., Svetashkov, A.A.: Iteration method for solving linear viscoelasticity problems. Russ. Phys. J. 36(4), 400–406 (1993)
15. 15.
Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, New York (1986)
16. 16.
Pobedrya, B.E.: Chislennye metody v teorii uprugosti i plastichnosti. MGU, Moscow (1995). [in Russian]
17. 17.
Rabotnov, Y.N.: Elementy nasledstvennoy mekhaniki tverdykh tel. Nauka, Moscow (1977). [in Russian]Google Scholar
18. 18.
Reddy, J.N.: An Introduction to Continuum Mechanics. CUP, New York (2008)Google Scholar
19. 19.
Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1988)
20. 20.
Svetashkov, A.A.: Time-effective moduli of linear viscoelastic body. Mech. Compos. Mater. 36(1), 37–44 (2000a)
21. 21.
Svetashkov, A.A.: Iteracionnye metody reshenija zadach linejnoj i nelinejnoj vjazkouprugosti, termovjazkouprugosti, termouprugosti. Thesis (DSci in Physics and Mathematics). Scientific Research Institute of Applied Mathematics and Mechanics, Tomsk State University, Tomsk (2000b). [in Russian]Google Scholar
22. 22.
Wang, H.N., Nie, G.H.: Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions. Acta Mech. 210(3), 315–330 (2010)
23. 23.
Zienkiewicz, O.C., Watson, M., King, I.: A numerical method of viscoelastic stress. J. Mech. Sci. 10(10), 807–827 (1968)
24. 24.
Zocher, M.A., Groves, S.E.: A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. Int. J. Numer. Methods Eng. 40, 2267–2288 (1997)

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

## Authors and Affiliations

• Alexander Svetashkov
• 1
• Nikolay Kupriyanov
• 1
• Kayrat Manabaev
• 1
1. 1.National Research Tomsk Polytechnic UniversityTomskRussia