Advertisement

Acta Mechanica

, Volume 229, Issue 6, pp 2561–2569 | Cite as

Wave attenuation and negative refraction of elastic waves in a single-phase elastic metamaterial

  • Sheng Sang
  • Eric Sandgren
  • Ziping Wang
Original Paper

Abstract

In this paper, we propose and study a single-phase elastic metamaterial with periodic chiral local resonator, which is composed of cylindrical central core surrounded by evenly distributed ligaments and embedded in the matrix in a square lattice. Based on the analytical and numerical analysis, we prove that the translational resonance of the unit cell can lead to negative effective mass density, and the rotational resonance of it can produce negative effective modulus. They can also work together to generate double-negative effective material properties. The wave attenuation of elastic waves in this elastic metamaterial is also demonstrated, which is owing to the negative effective mass density. In addition, the damping of the base material is also considered in the simulation. We finally examine the existence of negative band, and this leads to the physics of negative refraction, which is induced by simultaneous translational and rotational resonance of the unit cell. Our work can serve as the theoretical foundation for the design of single-phase elastic metamaterials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We appreciate the financial support from the National Natural Science Foundation of China (Grants No. 11402101).

References

  1. 1.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\upvarepsilon \) and \(\upmu \). Sov. Phys. Usp. 10, 509–514 (1968)CrossRefGoogle Scholar
  2. 2.
    Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic microstructures. Phys. Rev. Lett. 76, 4773–4776 (1996)CrossRefGoogle Scholar
  3. 3.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. Phys. Rev. Lett. 47, 2075–2084 (1999)Google Scholar
  4. 4.
    Seddon, N.: Observation of the Inverse Doppler effect. Science 302, 1537–1540 (2003)CrossRefGoogle Scholar
  5. 5.
    Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)CrossRefGoogle Scholar
  6. 6.
    Alù, A., Engheta, N.: Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J. Opt. A: Pure Appl. Opt. 10, 093002 (2008)CrossRefGoogle Scholar
  7. 7.
    Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005)CrossRefGoogle Scholar
  8. 8.
    Bragg W.:The Diffraction of Short Electromagnetic Waves by a Crystal. In: Proceedings of the Cambridge Philosophical Society, vol. 17, pp. 43–57 (1913)Google Scholar
  9. 9.
    Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A. 463, 855–880 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yao, S., Zhou, X., Hu, G.: Investigation of the negative-mass behaviors occurring below a cut-off frequency. New J. Phys. 12, 103025 (2010)CrossRefGoogle Scholar
  11. 11.
    Huang, H., Sun, C., Huang, G.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)CrossRefGoogle Scholar
  12. 12.
    Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010)CrossRefGoogle Scholar
  13. 13.
    Huang, H., Sun, C.: Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philos. Mag. 91, 981–996 (2011)CrossRefGoogle Scholar
  14. 14.
    Liu, X.N., Hu, G.K., Huang, G.L., Sun, C.T.: An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011)CrossRefGoogle Scholar
  15. 15.
    Pai, P.F.: Metamaterial-based broadband elastic wave absorber. J. Intell. Mater. Syst. Struct. 21, 517–528 (2010)CrossRefGoogle Scholar
  16. 16.
    Sun, H., Chang, L., Du, X., Pai, P.: Theory and experiment research of metamaterial beams for broadband vibration absorption. J. Intell. Mater. Syst. Struct. 21, 1085–1101 (2010)CrossRefGoogle Scholar
  17. 17.
    Pai, P.F., Peng, H.: Acoustic metamaterial structures based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)CrossRefGoogle Scholar
  18. 18.
    Peng, H., Pai, P.F.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhu, R., Liu, X.N., Huang, G.L., Huang, H.H., Sun, C.T.: Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density. Phys. Rev. B 86, 144307 (2012)CrossRefGoogle Scholar
  20. 20.
    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)CrossRefGoogle Scholar
  21. 21.
    Ding, Y., Liu, Z., Qiu, C., Shi, J.: Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007)CrossRefGoogle Scholar
  22. 22.
    Lai, Y., Wu, Y., Sheng, P.: Hybrid elastic solids. Nat. Mater. 10, 620–6244 (2011)CrossRefGoogle Scholar
  23. 23.
    Wu, Y., Lai, Y., Zhang, Z.-Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)CrossRefGoogle Scholar
  24. 24.
    Li, J., Chan, C.: Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004)CrossRefGoogle Scholar
  25. 25.
    Liu, X., Hu, G., Sun, C., Huang, G.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330, 2536–2553 (2011)CrossRefGoogle Scholar
  26. 26.
    Liu, X., Huang, G., Hu, G.: Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60, 1907–1921 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhu, R., Liu, X., Hu, G., Sun, C., Huang, G.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of System EngineeringUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Faculty of Civil Engineering and MechanicsJiangsu UniversityZhenjiangChina

Personalised recommendations