Skip to main content
Log in

Smoothed FE-Meshfree method for solid mechanics problems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a smoothed FE-Meshfree (SFE-Meshfree) method for solving solid mechanics problems. The system stiffness matrix is calculated via a strain-smoothing technique with the composite shape function, which is based on the partition of unity-based method, combing the classical isoparametric quadrilateral function and radial-polynomial basis function. The corresponding Gauss integration in the element is replaced by line integration along the edges of the smoothing cells, so no derivatives of the composite shape functions are needed during the field gradient estimation process. Several numerical examples including an automobile mechanical component are employed to examine the presented method. Calculation results indicate that SFE-Meshfree can obtain a high convergence rate and accuracy without introducing additional degrees of freedom to the system. In addition, it is also more tolerant with respect to mesh distortion. The volumetric locking problem is also explored in this paper under a selective smoothing integration scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  2. Lee, N.S., Bathe, K.J.: Effects of element distortions on the performance of isoparametric elements. Int. J. Numer. Methods Eng. 36(20), 3553–3576 (1993)

    Article  MATH  Google Scholar 

  3. Zeng, W., Liu, G.R.: Smoothed finite element methods (S-FEM): an overview and recent developments. Arch. Comput. Methods Eng. (2016). https://doi.org/10.1007/s11831-016-9202-3

  4. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  MATH  Google Scholar 

  5. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20(8–9), 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atluri, S.N., Zhu, T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mirzaei, D., Hasanpour, K.: Direct meshless local Petrov–Galerkin method for elastodynamic analysis. Acta Mech. 227(3), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, G.R., Gu, Y.T.: A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng. 50(4), 937–951 (2001)

    Article  MATH  Google Scholar 

  10. Liu, G.R., Gu, Y.T.: A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J. Sound Vib. 246(1), 29–46 (2001)

    Article  Google Scholar 

  11. Shojaei, A., Mossaiby, F., Zaccariotto, M., et al.: The meshless finite point method for transient elastodynamic problems. Acta Mech. 2, 1–13 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, B.R., Rajendran, S.: ‘FE-Meshfree’ QUAD4 element for free-vibration analysis. Comput. Methods Appl. Mech. Eng. 197(45), 3595–3604 (2008)

    Article  MATH  Google Scholar 

  13. Zheng, C., Wu, S.C., Tang, X.H., et al.: A novel twice-interpolation finite element method for solid mechanics problems. Acta. Mech. Sin. 26(2), 265–278 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, G.R., Gu, Y.T.: Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput. Mech. 26(6), 536–546 (2000)

    Article  MATH  Google Scholar 

  15. Rabczuk, T., Xiao, S.P., Sauer, M.: Coupling of mesh-free methods with finite elements: basic concepts and test results. Int. J. Numer. Methods Biomed. Eng. 22(10), 1031–1065 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Chen, J.S., Wu, C.T., Yoon, S., et al.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50(2), 435–466 (2001)

    Article  MATH  Google Scholar 

  17. Liu, G.R., Dai, K.Y., Nguyen, T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. 39(6), 859–877 (2007)

    Article  MATH  Google Scholar 

  18. Lee, K., Lim, J.H., Sohn, D., et al.: A three-dimensional cell-based smoothed finite element method for elasto-plasticity. J. Mech. Sci. Technol. 29(2), 611–623 (2015)

    Article  Google Scholar 

  19. Liu, G.R., Nguyen, T.T., Nguyen, X.H., et al.: A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 87(1), 14–26 (2009)

    Article  Google Scholar 

  20. Nguyen, T.T., Vu-Do, H.C., Rabczuk, T., et al.: A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 199(45), 3005–3027 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, G.R., Nguyen, T.T., Lam, K.Y.: An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J. Sound Vib. 320(4), 1100–1130 (2009)

    Article  Google Scholar 

  22. He, Z.C., Li, G.Y., Zhong, Z.H., et al.: An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput. Mech. 52(1), 221–236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, T.T., Liu, G.R., Lam, K.Y., et al.: A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int. J. Numer. Methods Eng. 78(3), 324–353 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, G.R., Nguyen, T.T., Lam, K.Y.: A novel alpha finite element method (\(\alpha \)FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput. Methods Appl. Mech. Eng. 197(45), 3883–3897 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeng, W., Liu, G.R., Li, D., et al.: A smoothing technique based beta finite element method (\(\beta \)FEM) for crystal plasticity modeling. Comput. Struct. 162, 48–67 (2016)

    Article  Google Scholar 

  26. Babuška, I., Melenk, J.M.: Partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cai, Y., Zhuang, X., Zhu, H.: A generalized and efficient method for finite cover generation in the numerical manifold method. Int. J. Comput. Methods 10(05), 1350028 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, H., Xu, D.: New strategies for some issues of numerical manifold method in simulation of crack propagation. Int. J. Numer. Methods Eng. 97(13), 986–1010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Oden, J.T., Duarte, C.A.M., Zienkiewicz, O.C.: A new cloud-based hp finite element method. Comput. Methods Appl. Mech. Eng. 153(1–2), 117–126 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1), 43–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schweitzer, M.A.: Stable enrichment and local preconditioning in the particle-partition of unity method. Numer. Math. 118(1), 137–170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Modell. Simul. Mater. Sci. Eng. 17(4), 043001 (2009)

    Article  Google Scholar 

  34. Amiri, F., Anitescu, C., Arroyo, M., et al.: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Comput. Mech. 53(1), 45–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rajendran, S., Zhang, B.R.: A “FE-Meshfree” QUAD4 element based on partition of unity. Comput. Methods Appl. Mech. Eng. 197(1), 128–147 (2007)

    Article  MATH  Google Scholar 

  36. Rajendran, S., Zhang, B.R.: Corrigendum to “a ‘FE-Meshfree’ QUAD4 element based on partition of unity” [Comput. Methods Appl. Mech. Eng. 197, 128–147 (2007)]. Comput. Methods Appl. Mech. Eng. 197(13), 1430–1430 (2008)

  37. Xu, J.P., Rajendran, S.: A ‘FE-Meshfree’ TRIA3 element based on partition of unity for linear and geometry nonlinear analyses. Comput. Mech. 51(6), 843–864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tang, X., Zheng, C., Wu, S., et al.: A novel four-node quadrilateral element with continuous nodal stress. Appl. Math. Mech. 30(12), 1519–1532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, Y., Tang, X., Zheng, H.: A three-node triangular element with continuous nodal stress. Comput. Struct. 141, 46–58 (2014)

    Article  Google Scholar 

  40. Yang, Y., Chen, L., Tang, X., et al.: A partition-of-unity based ‘FE-Meshfree’ hexahedral element with continuous nodal stress. Comput. Struct. 178, 17–28 (2017)

    Article  Google Scholar 

  41. Cai, Y., Zhuang, X., Augarde, C.: A new partition of unity finite element free from the linear dependence problem and possessing the delta property. Comput. Methods Appl. Mech. Eng. 199(17), 1036–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, J.P., Rajendran, S.: A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses. Comput. Methods Appl. Mech. Eng. 200(47), 3309–3323 (2011)

    Article  MATH  Google Scholar 

  43. Yang, Y., Bi, R., Zheng, H.: A hybrid ‘FE-Meshless’ QUAD4 with continuous nodal stress using radial-polynomial basis functions. Eng. Anal. Bound. Elem. 53, 73–85 (2015)

    Article  MathSciNet  Google Scholar 

  44. Yang, Y., Xu, D., Zheng, H.: A partition-of-unity based ‘FE-Meshfree’ triangular element with radial-polynomial basis functions for static and free vibration analysis. Eng. Anal. Bound. Elem. 65, 18–38 (2016)

    Article  MathSciNet  Google Scholar 

  45. Yang, Y., Tang, X., Zheng, H.: Construct ‘FE-Meshfree’ QUAD4 using mean value coordinates. Eng. Anal. Bound. Elem. 59, 78–88 (2015)

    Article  MathSciNet  Google Scholar 

  46. Yang, Y., Xu, D., Zheng, H.: Application of the three-node triangular element with continuous nodal stress for free vibration analysis. Comput. Struct. 169, 69–80 (2016)

    Article  Google Scholar 

  47. Yang, Y., Chen, L., Xu, D., et al.: Free and forced vibration analyses using the four-node quadrilateral element with continuous nodal stress. Eng. Anal. Bound. Elem. 70, 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  48. Rajendran, S., Zhang, B.R., Liew, K.M.: A partition of unity-based ‘FE-Meshfree’ QUAD4 element for geometric non-linear analysis. Int. J. Numer. Methods Eng. 82(12), 1574–1608 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Yang, Y., Sun, G., Zheng, H.: Application of the “FE-Meshfree” QUAD4 with continuous nodal stress using radial-polynomial basis functions for vibration and geometric nonlinear analyses. Eng. Anal. Bound. Elem. 78, 31–48 (2017)

    Article  MathSciNet  Google Scholar 

  50. Yao, L., Tian, W., Li, L., et al.: Numerical investigations of a partition-of-unity based “FE-Meshfree” QUAD4 element with radial-polynomial basis function for acoustic problems. Appl. Math. Model. 40(13), 6199–6217 (2016)

    Article  MathSciNet  Google Scholar 

  51. Golberg, M.A., Chen, C.S., Bowman, H.: Some recent results and proposals for the use of radial basis functions in the BEM. Eng. Anal. Bound. Elem. 23(4), 285–296 (1999)

    Article  MATH  Google Scholar 

  52. Timoshenko, S.P., Goodierwrited, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    Google Scholar 

  53. Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J.: Composite laminated plates: a 3D natural neighbor radial point interpolation method approach. J. Sandw. Struct. Mater. 12(2), 119–138 (2010)

    Article  Google Scholar 

  54. Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J.: Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput. Methods Appl. Mech. Eng. 196(13–16), 2009–2028 (2007)

    Article  MATH  Google Scholar 

  55. Cook, R.D.: Improved two-dimension finite element. J. Struct. Div. 100(9), 1851–1863 (1974)

    Google Scholar 

  56. Hughes, T.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New York (2000)

    MATH  Google Scholar 

  57. Nguyen, T.T., Liu, G.R., Dai, K.Y., et al.: Selective smoothed finite element method. Tsinghua Sci. Technol. 12(5), 497–508 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11472137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Qian, L., Ma, J. et al. Smoothed FE-Meshfree method for solid mechanics problems. Acta Mech 229, 2597–2618 (2018). https://doi.org/10.1007/s00707-018-2124-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2124-4

Navigation