Advertisement

Acta Mechanica

, Volume 229, Issue 6, pp 2597–2618 | Cite as

Smoothed FE-Meshfree method for solid mechanics problems

  • Guangsong Chen
  • Linfang Qian
  • Jia Ma
  • Yicheng Zhu
Original Paper
  • 115 Downloads

Abstract

This paper presents a smoothed FE-Meshfree (SFE-Meshfree) method for solving solid mechanics problems. The system stiffness matrix is calculated via a strain-smoothing technique with the composite shape function, which is based on the partition of unity-based method, combing the classical isoparametric quadrilateral function and radial-polynomial basis function. The corresponding Gauss integration in the element is replaced by line integration along the edges of the smoothing cells, so no derivatives of the composite shape functions are needed during the field gradient estimation process. Several numerical examples including an automobile mechanical component are employed to examine the presented method. Calculation results indicate that SFE-Meshfree can obtain a high convergence rate and accuracy without introducing additional degrees of freedom to the system. In addition, it is also more tolerant with respect to mesh distortion. The volumetric locking problem is also explored in this paper under a selective smoothing integration scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11472137.

References

  1. 1.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. Butterworth-Heinemann, Oxford (2000)zbMATHGoogle Scholar
  2. 2.
    Lee, N.S., Bathe, K.J.: Effects of element distortions on the performance of isoparametric elements. Int. J. Numer. Methods Eng. 36(20), 3553–3576 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zeng, W., Liu, G.R.: Smoothed finite element methods (S-FEM): an overview and recent developments. Arch. Comput. Methods Eng. (2016).  https://doi.org/10.1007/s11831-016-9202-3
  4. 4.
    Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)CrossRefzbMATHGoogle Scholar
  5. 5.
    Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20(8–9), 1081–1106 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Atluri, S.N., Zhu, T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mirzaei, D., Hasanpour, K.: Direct meshless local Petrov–Galerkin method for elastodynamic analysis. Acta Mech. 227(3), 1–14 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, G.R., Gu, Y.T.: A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng. 50(4), 937–951 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Liu, G.R., Gu, Y.T.: A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J. Sound Vib. 246(1), 29–46 (2001)CrossRefGoogle Scholar
  11. 11.
    Shojaei, A., Mossaiby, F., Zaccariotto, M., et al.: The meshless finite point method for transient elastodynamic problems. Acta Mech. 2, 1–13 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Zhang, B.R., Rajendran, S.: ‘FE-Meshfree’ QUAD4 element for free-vibration analysis. Comput. Methods Appl. Mech. Eng. 197(45), 3595–3604 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zheng, C., Wu, S.C., Tang, X.H., et al.: A novel twice-interpolation finite element method for solid mechanics problems. Acta. Mech. Sin. 26(2), 265–278 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, G.R., Gu, Y.T.: Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput. Mech. 26(6), 536–546 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rabczuk, T., Xiao, S.P., Sauer, M.: Coupling of mesh-free methods with finite elements: basic concepts and test results. Int. J. Numer. Methods Biomed. Eng. 22(10), 1031–1065 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Chen, J.S., Wu, C.T., Yoon, S., et al.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50(2), 435–466 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, G.R., Dai, K.Y., Nguyen, T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. 39(6), 859–877 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, K., Lim, J.H., Sohn, D., et al.: A three-dimensional cell-based smoothed finite element method for elasto-plasticity. J. Mech. Sci. Technol. 29(2), 611–623 (2015)CrossRefGoogle Scholar
  19. 19.
    Liu, G.R., Nguyen, T.T., Nguyen, X.H., et al.: A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 87(1), 14–26 (2009)CrossRefGoogle Scholar
  20. 20.
    Nguyen, T.T., Vu-Do, H.C., Rabczuk, T., et al.: A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 199(45), 3005–3027 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu, G.R., Nguyen, T.T., Lam, K.Y.: An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J. Sound Vib. 320(4), 1100–1130 (2009)CrossRefGoogle Scholar
  22. 22.
    He, Z.C., Li, G.Y., Zhong, Z.H., et al.: An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput. Mech. 52(1), 221–236 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nguyen, T.T., Liu, G.R., Lam, K.Y., et al.: A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int. J. Numer. Methods Eng. 78(3), 324–353 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, G.R., Nguyen, T.T., Lam, K.Y.: A novel alpha finite element method (\(\alpha \)FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput. Methods Appl. Mech. Eng. 197(45), 3883–3897 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zeng, W., Liu, G.R., Li, D., et al.: A smoothing technique based beta finite element method (\(\beta \)FEM) for crystal plasticity modeling. Comput. Struct. 162, 48–67 (2016)CrossRefGoogle Scholar
  26. 26.
    Babuška, I., Melenk, J.M.: Partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cai, Y., Zhuang, X., Zhu, H.: A generalized and efficient method for finite cover generation in the numerical manifold method. Int. J. Comput. Methods 10(05), 1350028 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zheng, H., Xu, D.: New strategies for some issues of numerical manifold method in simulation of crack propagation. Int. J. Numer. Methods Eng. 97(13), 986–1010 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Oden, J.T., Duarte, C.A.M., Zienkiewicz, O.C.: A new cloud-based hp finite element method. Comput. Methods Appl. Mech. Eng. 153(1–2), 117–126 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1), 43–69 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schweitzer, M.A.: Stable enrichment and local preconditioning in the particle-partition of unity method. Numer. Math. 118(1), 137–170 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Modell. Simul. Mater. Sci. Eng. 17(4), 043001 (2009)CrossRefGoogle Scholar
  34. 34.
    Amiri, F., Anitescu, C., Arroyo, M., et al.: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Comput. Mech. 53(1), 45–57 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rajendran, S., Zhang, B.R.: A “FE-Meshfree” QUAD4 element based on partition of unity. Comput. Methods Appl. Mech. Eng. 197(1), 128–147 (2007)CrossRefzbMATHGoogle Scholar
  36. 36.
    Rajendran, S., Zhang, B.R.: Corrigendum to “a ‘FE-Meshfree’ QUAD4 element based on partition of unity” [Comput. Methods Appl. Mech. Eng. 197, 128–147 (2007)]. Comput. Methods Appl. Mech. Eng. 197(13), 1430–1430 (2008)Google Scholar
  37. 37.
    Xu, J.P., Rajendran, S.: A ‘FE-Meshfree’ TRIA3 element based on partition of unity for linear and geometry nonlinear analyses. Comput. Mech. 51(6), 843–864 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Tang, X., Zheng, C., Wu, S., et al.: A novel four-node quadrilateral element with continuous nodal stress. Appl. Math. Mech. 30(12), 1519–1532 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yang, Y., Tang, X., Zheng, H.: A three-node triangular element with continuous nodal stress. Comput. Struct. 141, 46–58 (2014)CrossRefGoogle Scholar
  40. 40.
    Yang, Y., Chen, L., Tang, X., et al.: A partition-of-unity based ‘FE-Meshfree’ hexahedral element with continuous nodal stress. Comput. Struct. 178, 17–28 (2017)CrossRefGoogle Scholar
  41. 41.
    Cai, Y., Zhuang, X., Augarde, C.: A new partition of unity finite element free from the linear dependence problem and possessing the delta property. Comput. Methods Appl. Mech. Eng. 199(17), 1036–1043 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Xu, J.P., Rajendran, S.: A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses. Comput. Methods Appl. Mech. Eng. 200(47), 3309–3323 (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Yang, Y., Bi, R., Zheng, H.: A hybrid ‘FE-Meshless’ QUAD4 with continuous nodal stress using radial-polynomial basis functions. Eng. Anal. Bound. Elem. 53, 73–85 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Yang, Y., Xu, D., Zheng, H.: A partition-of-unity based ‘FE-Meshfree’ triangular element with radial-polynomial basis functions for static and free vibration analysis. Eng. Anal. Bound. Elem. 65, 18–38 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Yang, Y., Tang, X., Zheng, H.: Construct ‘FE-Meshfree’ QUAD4 using mean value coordinates. Eng. Anal. Bound. Elem. 59, 78–88 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Yang, Y., Xu, D., Zheng, H.: Application of the three-node triangular element with continuous nodal stress for free vibration analysis. Comput. Struct. 169, 69–80 (2016)CrossRefGoogle Scholar
  47. 47.
    Yang, Y., Chen, L., Xu, D., et al.: Free and forced vibration analyses using the four-node quadrilateral element with continuous nodal stress. Eng. Anal. Bound. Elem. 70, 1–11 (2016)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Rajendran, S., Zhang, B.R., Liew, K.M.: A partition of unity-based ‘FE-Meshfree’ QUAD4 element for geometric non-linear analysis. Int. J. Numer. Methods Eng. 82(12), 1574–1608 (2010)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Yang, Y., Sun, G., Zheng, H.: Application of the “FE-Meshfree” QUAD4 with continuous nodal stress using radial-polynomial basis functions for vibration and geometric nonlinear analyses. Eng. Anal. Bound. Elem. 78, 31–48 (2017)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Yao, L., Tian, W., Li, L., et al.: Numerical investigations of a partition-of-unity based “FE-Meshfree” QUAD4 element with radial-polynomial basis function for acoustic problems. Appl. Math. Model. 40(13), 6199–6217 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Golberg, M.A., Chen, C.S., Bowman, H.: Some recent results and proposals for the use of radial basis functions in the BEM. Eng. Anal. Bound. Elem. 23(4), 285–296 (1999)CrossRefzbMATHGoogle Scholar
  52. 52.
    Timoshenko, S.P., Goodierwrited, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)Google Scholar
  53. 53.
    Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J.: Composite laminated plates: a 3D natural neighbor radial point interpolation method approach. J. Sandw. Struct. Mater. 12(2), 119–138 (2010)CrossRefGoogle Scholar
  54. 54.
    Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J.: Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput. Methods Appl. Mech. Eng. 196(13–16), 2009–2028 (2007)CrossRefzbMATHGoogle Scholar
  55. 55.
    Cook, R.D.: Improved two-dimension finite element. J. Struct. Div. 100(9), 1851–1863 (1974)Google Scholar
  56. 56.
    Hughes, T.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New York (2000)zbMATHGoogle Scholar
  57. 57.
    Nguyen, T.T., Liu, G.R., Dai, K.Y., et al.: Selective smoothed finite element method. Tsinghua Sci. Technol. 12(5), 497–508 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Guangsong Chen
    • 1
  • Linfang Qian
    • 1
  • Jia Ma
    • 1
  • Yicheng Zhu
    • 1
  1. 1.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations