Acta Mechanica

, Volume 229, Issue 6, pp 2571–2584 | Cite as

Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD

Original Paper

Abstract

Molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order force fields were conducted to determine the transversely isotropic elastic properties of carbon nanotubes (CNTs) containing vacancies. This is achieved by imposing axial extension, twist, in-plane biaxial tension, and in-plane shear to the defective CNTs. The effects of vacancy concentrations, their position, and the diameter of armchair CNTs were taken into consideration. Current results reveal that vacancy defects affect (i) the axial Young’s and shear moduli of smaller-diameter CNTs more than the larger ones and decrease by 8 and 16% for 1 and 2% vacancy concentrations, respectively; (ii) the plane strain bulk and the in-plane shear moduli of the larger-diameter CNTs more profoundly, reduced by 33 and 45% for 1 and 2% vacancy concentrations, respectively; and (iii) the plane strain bulk and in-plane shear moduli among all the elastic coefficients. It is also revealed that the position of vacancies along the length of CNTs is the main influencing factor which governs the change in the properties of CNTs, especially for vacancy concentration of 1%. The current fundamental study highlights the important role played by vacancy defected CNTs in determining their mechanical behaviors as reinforcements in multifunctional nanocomposites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).  https://doi.org/10.1038/381678a0 CrossRefGoogle Scholar
  2. 2.
    Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004).  https://doi.org/10.1103/PhysRevB.69.045414 CrossRefGoogle Scholar
  3. 3.
    Shen, L., Li, J.: Transversely isotropic elastic properties of multiwalled carbon nanotubes. Phys. Rev. B. 71, 035412 (2005).  https://doi.org/10.1103/PhysRevB.71.035412 CrossRefGoogle Scholar
  4. 4.
    Al-Ostaz, A., Pal, G., Mantena, P.R., Cheng, A.: Molecular dynamics simulation of SWCNT-polymer nanocomposite and its constituents. J. Mater. Sci. 43, 164–173 (2008).  https://doi.org/10.1007/s10853-007-2132-6 CrossRefGoogle Scholar
  5. 5.
    Song, X., Ge, Q., Yen, S.-C.: A first-principles study on the elastic properties of single-walled carbon nanotubes. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 223, 163–168 (2010).  https://doi.org/10.1177/17403499JNN181 Google Scholar
  6. 6.
    Tsai, J.-L., Tzeng, S.-H., Chiu, Y.-T.: Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. Part B Eng. 41, 106–115 (2010).  https://doi.org/10.1016/j.compositesb.2009.06.003 CrossRefGoogle Scholar
  7. 7.
    Faria, B., Silvestre, N., Canongia, J.N.: Mechanical behaviour of carbon nanotubes under combined twisting-bending. Mech. Res. Commun. 73, 19–24 (2016).  https://doi.org/10.1016/j.mechrescom.2016.01.010 CrossRefGoogle Scholar
  8. 8.
    Ajayan, P.M., Ravikumar, V., Charlier, J.-C.: Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437–1440 (1998).  https://doi.org/10.1103/PhysRevLett.81.1437 CrossRefGoogle Scholar
  9. 9.
    Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B. 65, 235430 (2002).  https://doi.org/10.1103/PhysRevB.65.235430 CrossRefGoogle Scholar
  10. 10.
    Troya, D., Mielke, S.L., Schatz, G.C.: Carbon nanotube fracture—differences between quantum mechanical mechanisms and those of empirical potentials. Chem. Phys. Lett. 382, 133–141 (2003).  https://doi.org/10.1016/j.cplett.2003.10.068 CrossRefGoogle Scholar
  11. 11.
    Lu, A.J., Pan, B.C.: Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504 (2004).  https://doi.org/10.1103/PhysRevLett.92.105504 CrossRefGoogle Scholar
  12. 12.
    Hao, X., Qiang, H., Xiaohu, Y.: Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos. Sci. Technol. 68, 1809–1814 (2008).  https://doi.org/10.1016/j.compscitech.2008.01.013 CrossRefGoogle Scholar
  13. 13.
    Yuan, J., Liew, K.M.: Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes. Carbon 47, 1526–1533 (2009).  https://doi.org/10.1016/j.carbon.2009.01.048 CrossRefGoogle Scholar
  14. 14.
    Chen, L., Zhao, Q., Gong, Z., Zhang, H.: The effects of different defects on the elastic constants of single-walled carbon nanotubes. In: Proceedings of the IEEE international conference on Nano/Micro engineered molecular systems (2010).  https://doi.org/10.1109/NEMS.2010.5592271
  15. 15.
    Fefey, E.G., Mohan, R., Kelkar, A.: Computational study of the effect of carbon vacancy defects on the Young’s modulus of (6, 6) single wall carbon nanotube. Mater. Sci. Eng. B. 176, 693–700 (2011).  https://doi.org/10.1016/j.mseb.2011.02.019 CrossRefGoogle Scholar
  16. 16.
    Ghavamian, A., Rahmandoust, M., Öchsner, A.: A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comput. Mater. Sci. 62, 110–116 (2012).  https://doi.org/10.1016/j.commatsci.2012.05.003 CrossRefGoogle Scholar
  17. 17.
    Talukdar, K., Mitra, A.K.: Molecular dynamics simulation of elastic properties and fracture behavior of single wall carbon nanotubes with vacancy and Stone–Wales defect. Adv. Compos. Mater. 20, 29–38 (2011).  https://doi.org/10.1163/092430410X504189 CrossRefGoogle Scholar
  18. 18.
    Sharma, K., Saxena, K.K., Shukla, M.: Effect of multiple Stone-Wales and vacancy defects on the mechanical behavior of carbon nanotubes using molecular dynamics. Procedia Eng. 38, 3373–3380 (2012).  https://doi.org/10.1016/j.proeng.2012.06.390 CrossRefGoogle Scholar
  19. 19.
    Zhou, Z.R., Liao, K.: Effect of inter-defect interaction on tensile fatigue behavior of a single-walled carbon nanotube with Stone–Wales defects. J. Appl. Mech. 80, 051005 (2013).  https://doi.org/10.1115/1.402353 CrossRefGoogle Scholar
  20. 20.
    Rafiee, R., Pourazizi, R.: Evaluating the influence of defects on the Young’ s modulus of carbon nanotubes using stochastic modeling. Mater. Res. 17, 758–766 (2014).  https://doi.org/10.1590/S1516-14392014005000071 CrossRefGoogle Scholar
  21. 21.
    Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Fernandes, J.V.: Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Compos. Part B Eng. 89, 155–168 (2016).  https://doi.org/10.1016/j.compositesb.2015.11.029 CrossRefGoogle Scholar
  22. 22.
    Alian, A.R., Meguid, S.A., Kundalwal, S.I.: Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon 125, 180–188 (2017).  https://doi.org/10.1016/J.CARBON.2017.09.056 CrossRefGoogle Scholar
  23. 23.
    Bocko, J., Lengvarský, P.: Buckling of single-walled carbon nanotubes with and without defects. J. Mech. Sci. Technol. 31, 1825–1833 (2017).  https://doi.org/10.1007/s12206-017-0330-y CrossRefGoogle Scholar
  24. 24.
    Shahini, E., Karimi Taheri, K., Karimi Taheri, A.: An investigation on tensile properties of coiled carbon nanotubes using molecular dynamics simulation. Diam. Relat. Mater. 74, 154–163 (2017).  https://doi.org/10.1016/j.diamond.2017.02.023 CrossRefGoogle Scholar
  25. 25.
    Joshi, U.A., Sharma, S.C., Harsha, S.P.: Effect of pinhole defects on the elasticity of carbon nanotube based nanocomposites. J. Nanotechnol. Eng. Med. 2, 11003 (2011).  https://doi.org/10.1115/1.4003028 CrossRefGoogle Scholar
  26. 26.
    Yang, S., Yu, S., Cho, M.: Influence of Thrower–Stone–Wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon 55, 133–143 (2013).  https://doi.org/10.1016/j.carbon.2012.12.019 CrossRefGoogle Scholar
  27. 27.
    Sharma, S., Chandra, R., Kumar, P., Kumar, N.: Effect of Stone–Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation. Comput. Mater. Sci. 86, 1–8 (2014).  https://doi.org/10.1016/j.commatsci.2014.01.035 CrossRefGoogle Scholar
  28. 28.
    Mahboob, M., Zahabul Islam, M.: Molecular dynamics simulations of defective CNT-polyethylene composite systems. Comput. Mater. Sci. 79, 223–229 (2013).  https://doi.org/10.1016/j.commatsci.2013.05.042 CrossRefGoogle Scholar
  29. 29.
    Lv, Q., Wang, Z., Chen, S., Li, C., Sun, S., Hu, S.: Effects of single adatom and Stone–Wales defects on the elastic properties of carbon nanotube/polypropylene composites: a molecular simulation study. Int. J. Mech. Sci. 131–132, 527–534 (2017).  https://doi.org/10.1016/j.ijmecsci.2017.08.001 CrossRefGoogle Scholar
  30. 30.
    Kumar, A., Singh, P.K., Sharma, K., Dwivedi, V.K.: Evaluation of elastic moduli for different patterns of Stone–Thrower–Wales defect in carbon nanotubes/epoxy composites. Mater. Today Proc. 4, 9423–9428 (2017).  https://doi.org/10.1016/j.matpr.2017.06.197 CrossRefGoogle Scholar
  31. 31.
    Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012).  https://doi.org/10.1016/j.mechmat.2012.05.008 CrossRefGoogle Scholar
  32. 32.
    Liu, X., Yang, Q.-S., He, X.-Q., Liew, K.-M.: Cohesive laws for van der Waals interactions of super carbon nanotube/polymer composites. Mech. Res. Commun. 72, 33–40 (2016).  https://doi.org/10.1016/j.mechrescom.2015.12.004 CrossRefGoogle Scholar
  33. 33.
    Kundalwal, S.I., Suresh Kumar, R., Ray, M.C.: Effective thermal conductivities of a novel fuzzy fiber-reinforced composite containing wavy carbon nanotubes. J. Heat Transf. 137, 012401 (2015).  https://doi.org/10.1115/1.4028762 CrossRefGoogle Scholar
  34. 34.
    Choyal, V., Kundalwal, S.I.: Interfacial characteristics of hybrid nanocomposite under thermomechanical loading. J. Mech. Behav. Mater. 26, 95–103 (2017)CrossRefGoogle Scholar
  35. 35.
    Mielke, S.L., Troya, D., Zhang, S., Li, J.L., Xiao, S., Car, R., Ruoff, R.S., Schatz, G.C., Belytschko, T.: The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004).  https://doi.org/10.1016/j.cplett.2004.04.054 CrossRefGoogle Scholar
  36. 36.
    Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K., Kaski, K.: Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70, 245416 (2004).  https://doi.org/10.1103/PhysRevB.70.245416 CrossRefGoogle Scholar
  37. 37.
    Haskins, R.W., Maier, R.S., Ebeling, R.M., Marsh, C.P., Majure, D.L., Bednar, A.J., Welch, C.R., Barker, B.C., Wu, D.T.: Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure. J. Chem. Phys. (2007).  https://doi.org/10.1063/1.2756832 Google Scholar
  38. 38.
    Ho, T., Rai, P., Xie, J., Varadan, V.K., Hestekin, J.A.: Stable flexible electrodes with enzyme cluster decorated carbon nanotubes for glucose-driven power source in biosensing applications. J. Nanotechnol. Eng. Med. 1, 041013 (2010).  https://doi.org/10.1115/1.4002731 CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Bai, Y., Yan, B.: Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today 15, 428–435 (2010).  https://doi.org/10.1016/j.drudis.2010.04.005 CrossRefGoogle Scholar
  40. 40.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).  https://doi.org/10.1006/jcph.1995.1039 CrossRefMATHGoogle Scholar
  41. 41.
    Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000).  https://doi.org/10.1063/1.481208 CrossRefGoogle Scholar
  42. 42.
    Ansari, R., Rouhi, H., Nasiri Rad, A.: Vibrational analysis of carbon nanocones under different boundary conditions: an analytical approach. Mech. Res. Commun. 56, 130–135 (2014).  https://doi.org/10.1016/j.mechrescom.2013.12.010 CrossRefGoogle Scholar
  43. 43.
    Krasheninnikov, A.V., Nordlund, K.: Irradiation effects in carbon nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B 216, 355–366 (2004).  https://doi.org/10.1016/j.nimb.2003.11.061 CrossRefGoogle Scholar
  44. 44.
    Haghighatpanah, S., Bolton, K.: Molecular-level computational studies of single wall carbon nanotube polyethylene composites. Comput. Mater. Sci. 69, 443–454 (2013).  https://doi.org/10.1016/j.commatsci.2012.12.012 CrossRefGoogle Scholar
  45. 45.
    Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015).  https://doi.org/10.1016/j.polymer.2015.06.004 CrossRefGoogle Scholar
  46. 46.
    Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003).  https://doi.org/10.1016/S0022-5096(03)00006-1 CrossRefMATHGoogle Scholar
  47. 47.
    Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005).  https://doi.org/10.1016/j.ijsolstr.2004.10.031 CrossRefMATHGoogle Scholar
  48. 48.
    Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964).  https://doi.org/10.1115/1.3629590 CrossRefGoogle Scholar
  49. 49.
    Hung, N.T., Truong, D.V., Thanh, V.V., Saito, R.: Intrinsic strength and failure behaviors of ultra-small single-walled carbon nanotubes. Comput. Mater. Sci. 114, 167–171 (2016).  https://doi.org/10.1016/j.commatsci.2015.12.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied and Theoretical Mechanics Laboratory, Discipline of Mechanical EngineeringIndian Institute of Technology IndoreSimrol, IndoreIndia

Personalised recommendations