Acta Mechanica

, Volume 229, Issue 6, pp 2631–2646 | Cite as

Heterogeneous Anisotropy Index and scaling in two-phase random polycrystals

  • Shivakumar I. Ranganathan
  • Muhammad Ridwan Murshed
  • Luis Costa
Original Paper
  • 42 Downloads

Abstract

Under consideration is the finite-size scaling of the elastic properties in two-phase random polycrystals with individual grains belonging to any arbitrary crystal class. These polycrystals are generated by Voronoi Tessellations with varying grain sizes and volume fractions. Any given realization of such a microstructure sampled randomly is highly anisotropic and heterogeneous. Using extremum principles in elasticity, we introduce the notion of a ‘Heterogeneous Anisotropy Index \(\left( A^U_H\right) \)’ and examine its role in the scaling of elastic properties at finite mesoscales (\(\delta \)). The relationship between \(A^U_H\) and the Universal Anisotropy Index \(A^U\) by Ranganathan and Ostoja-Starzewski (Phys Rev Lett 101(5):055504, 2008) is established for special cases. The index \(A^U_H\) turns out to be a function of 43 variables—21 independent components for each phase and the volume fraction of either phase. The scale-dependent bounds are then obtained by setting up and solving 9250 Dirichlet and Neumann type boundary value problems consistent with the Hill–Mandel homogenization condition. Subsequently, the concept of an elastic scaling function is introduced that takes a power-law form in terms of \(A^U_H\) and (\(\delta \)). Finally, a material scaling diagram is constructed by employing the elastic scaling function which captures the convergence to the effective properties for any two-phase elastic microstructure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101(5), 055504 (2008)CrossRefGoogle Scholar
  2. 2.
    Ostoja-Starzewski, M., Kale, S., Karimi, P., Malyarenko, A., Raghavan, B., Ranganathan, S.I., Zhang, J.: Chapter two-scaling to RVE in random media. Adv. Appl. Mech. 49, 111–211 (2016)CrossRefGoogle Scholar
  3. 3.
    Ostoja-Starzewski, M., Ranganathan, S.I.: Scaling and homogenization in spatially random composites. Mathematical Methods and Models in Composites, pp. 61–101. Imperial College Press, London (2013)Google Scholar
  4. 4.
    Zhang, J., Chen, Z., Dong, C.: Simulating intergranular stress corrosion cracking in AZ31 using three-dimensional cohesive elements for grain structure. J. Mater. Eng. Perform. 24(12), 4908–4918 (2015)CrossRefGoogle Scholar
  5. 5.
    Murshed, M.R., Ranganathan, S.I., Abed, F.H.: Design maps for fracture resistant functionally graded materials. Eur. J. Mech. A. Solids 58, 31–41 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Oezelt, H., Kovacs, A., Wohlhüter, P., Kirk, E., Nissen, D., Matthes, P., Heyderman, L.J., Albrecht, M., Schrefl, T.: Micromagnetic simulation of exchange coupled ferri-/ferromagnetic composite in bit patterned media. J. Appl. Phys. 117(17), 28–33 (2015)CrossRefGoogle Scholar
  7. 7.
    Toifl, M., Meisels, R., Hartlieb, P., Kuchar, F., Antretter, T.: 3D numerical study on microwave induced stresses in inhomogeneous hard rocks. Miner. Eng. 90, 29–42 (2016)CrossRefGoogle Scholar
  8. 8.
    Sledzinska, M., Graczykowski, B., Placidi, M., Reig, D .S., Sachat, A El, Reparaz, J., Alzina, F., Mortazavi, B., Quey, R., Colombo, L., et al.: Thermal conductivity of \(\text{ MoS }_{2}\) polycrystalline nanomembranes. 2D Materials 3(3), 035016 (2016)CrossRefGoogle Scholar
  9. 9.
    Ardeljan, M., Beyerlein, I.J., Knezevic, M.: A dislocation density based crystal plasticity finite element model: application to a two-phase polycrystalline HCP/BCC composites. J. Mech. Phys. Solids 66, 16–31 (2014)CrossRefGoogle Scholar
  10. 10.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Walpole, L.: On the overall elastic moduli of composite materials. J. Mech. Phys. Solids 17(4), 235–251 (1969)CrossRefMATHGoogle Scholar
  12. 12.
    Watt, J.P., Davies, G.F., O’Connell, R.J.: The elastic properties of composite materials. Rev. Geophys. 14(4), 541–563 (1976)CrossRefGoogle Scholar
  13. 13.
    Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)CrossRefGoogle Scholar
  14. 14.
    Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)CrossRefGoogle Scholar
  15. 15.
    Weng, G.: The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. Int. J. Eng. Sci. 28(11), 1111–1120 (1990)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ni, Y., Chiang, M.Y.: Prediction of elastic properties of heterogeneous materials with complex microstructures. J. Mech. Phys. Solids 55(3), 517–532 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 241, pp. 376–396. The Royal Society (1957)Google Scholar
  18. 18.
    Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)CrossRefMATHGoogle Scholar
  19. 19.
    Mandel, J.: Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Applied Mechanics, pp. 502–509. Springer (1966)Google Scholar
  20. 20.
    Ranganathan, S.I., Ostoja-Starzewski, M.: Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J. Mech. Phys. Solids 56(9), 2773–2791 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ranganathan, S.I., Ostoja-Starzewski, M.: Towards scaling laws in random polycrystals. Int. J. Eng. Sci. 47(11), 1322–1330 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Murshed, M.R., Ranganathan, S.I.: Hill–Mandel condition and bounds on lower symmetry elastic crystals. Mech. Res. Commun. 81, 7–10 (2017)CrossRefGoogle Scholar
  23. 23.
    Dalaq, A.S., Ranganathan, S.I.: Invariants of mesoscale thermal conductivity and resistivity tensors in random checkerboards. Eng. Comput. 32(6), 1601–1618 (2015)CrossRefGoogle Scholar
  24. 24.
    Kale, S., Saharan, A., Koric, S., Ostoja-Starzewski, M.: Scaling and bounds in thermal conductivity of planar Gaussian correlated microstructures. J. Appl. Phys. 117(10), 104301 (2015)CrossRefGoogle Scholar
  25. 25.
    Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys. Rev. B 54(1), 278 (1996)CrossRefGoogle Scholar
  26. 26.
    Du, X., Ostoja-Starzewski, M.: On the scaling from statistical to representative volume element in thermoelasticity of random materials. Netw. Heterog. Media 1(2), 259 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Khisaeva, Z., Ostoja-Starzewski, M.: Mesoscale bounds in finite elasticity and thermoelasticity of random composites. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 462, pp. 1167–1180. The Royal Society (2006)Google Scholar
  28. 28.
    Ostoja-Starzewski, M.: Material spatial randomness: from statistical to representative volume element. Probab. Eng. Mech. 21(2), 112–132 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ostoja-Starzewski, M., Du, X., Khisaeva, Z., Li, W.: Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. Int. J. Multiscale Comput. Eng. 5(2), 73–82 (2007)CrossRefGoogle Scholar
  30. 30.
    Du, X., Ostoja-Starzewski, M.: On the size of representative volume element for darcy law in random media. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 462, pp. 2949–2963. The Royal Society (2006)Google Scholar
  31. 31.
    Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. CRC Press, Boca Raton (2007)CrossRefMATHGoogle Scholar
  32. 32.
    Ranganathan, S.I., Ostoja-Starzewski, M.: Scale-dependent homogenization of inelastic random polycrystals. J. Appl. Mech. 75(5), 051008 (2008)CrossRefGoogle Scholar
  33. 33.
    Ostoja-Starzewski, M.: Scale effects in plasticity of random media: status and challenges. Int. J. Plast 21(6), 1119–1160 (2005)CrossRefMATHGoogle Scholar
  34. 34.
    Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13), 3647–3679 (2003)CrossRefMATHGoogle Scholar
  35. 35.
    Voigt, W.: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Teubner, Leipzig (1928)Google Scholar
  36. 36.
    Reuss, A.: Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 9(1), 49–58 (1929)CrossRefMATHGoogle Scholar
  37. 37.
    Kanit, T., N’Guyen, F., Forest, S., Jeulin, D., Reed, M., Singleton, S.: Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput. Methods Appl. Mech. Eng. 195(33), 3960–3982 (2006)CrossRefMATHGoogle Scholar
  38. 38.
    Murshed, M.R., Ranganathan, S.I.: Scaling laws in elastic polycrystals with individual grains belonging to any crystal class. Acta Mech. 228(4), 1525–1539 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ranganathan, S.I., Ostoja-Starzewski, M.: Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal crystals. Phys. Rev. B 77(21), 214308 (2008)CrossRefGoogle Scholar
  40. 40.
    Raghavan, B.V., Ranganathan, S.I.: Bounds and scaling laws at finite scales in planar elasticity. Acta Mech. 225(11), 3007–3022 (2014)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Dalaq, A.S., Ranganathan, S.I., Ostoja-Starzewski, M.: Scaling function in conductivity of planar random checkerboards. Comput. Mater. Sci. 79, 252–261 (2013)CrossRefGoogle Scholar
  42. 42.
    Raghavan, B.V., Ranganathan, S.I., Ostoja-Starzewski, M.: Electrical properties of random checkerboards at finite scales. AIP Adv. 5(1), 017131 (2015)CrossRefGoogle Scholar
  43. 43.
    Zhang, J., Ostoja-Starzewski, M.: Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites, In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 472. The Royal Society (2016)Google Scholar
  44. 44.
    Norian, K.: Equivalent circuit components of nickel–cadmium battery at different states of charge. J. Power Sources 196(11), 5205–5208 (2011)CrossRefGoogle Scholar
  45. 45.
    Wang, Y., Lu, K.H., Gupta, V., Stiborek, L., Shirley, D., Chae, S.-H., Im, J., Ho, P.S.: Effects of Sn grain structure on the electromigration of Sn–Ag solder joints. J. Mater. Res. 27(08), 1131–1141 (2012)CrossRefGoogle Scholar
  46. 46.
    Kazi, I.H., Wild, P., Moore, T., Sayer, M.: Characterization of sputtered nichrome (Ni–Cr 80/20 wt%) films for strain gauge applications. Thin Solid Films 515(4), 2602–2606 (2006)CrossRefGoogle Scholar
  47. 47.
    Srivastava, M., Selvi, V.E., Grips, V.W., Rajam, K.: Corrosion resistance and microstructure of electrodeposited nickel–cobalt alloy coatings. Surf. Coat. Technol. 201(6), 3051–3060 (2006)CrossRefGoogle Scholar
  48. 48.
    Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)MATHGoogle Scholar
  49. 49.
    Quey, R., Dawson, P., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200(17), 1729–1745 (2011)CrossRefMATHGoogle Scholar
  50. 50.
    El Houdaigui, F., Forest, S., Gourgues, A.-F., Jeulin, D.: On the size of the representative volume element for isotropic elastic polycrystalline copper. In: IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, pp. 171–180. Springer (2007)Google Scholar
  51. 51.
    Walpole, L.: Elastic behavior of composite materials: theoretical foundations. Adv. Appl. Mech. 21, 169–242 (1981)CrossRefMATHGoogle Scholar
  52. 52.
    Walpole, L.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 391, pp. 149–179. The Royal Society (1984)Google Scholar
  53. 53.
    Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13(2), 89–101 (1965)CrossRefMATHGoogle Scholar
  54. 54.
    Ranganathan, S.I., Ostoja-Starzewski, M., Ferrari, M.: Quantifying the anisotropy in biological materials. J. Appl. Mech. 78(6), 064501 (2011)CrossRefGoogle Scholar
  55. 55.
    Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189(2), 419–438 (2000)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Sab, K.: On the homogenization and the simulation of random materials. Eur. J. Mech. A/Solids 11(5), 585–607 (1992)MathSciNetMATHGoogle Scholar
  57. 57.
    Huet, C.: Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38(6), 813–841 (1990)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond Sect A 65(5), 349–354 (1952)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Shivakumar I. Ranganathan
    • 1
  • Muhammad Ridwan Murshed
    • 2
  • Luis Costa
    • 3
  1. 1.Department of Mechanical EngineeringVirginia Polytechnic Institute and State University, Northern Virginia CenterFalls ChurchUSA
  2. 2.Department of Mechanical EngineeringRowan UniversityGlassboroUSA
  3. 3.Institute for Multiscale Reactive Modeling, Energetics and Warheads Research and Development, RDAR-MEE-WPicatinnyUSA

Personalised recommendations