Advertisement

Acta Mechanica

, Volume 229, Issue 6, pp 2393–2411 | Cite as

Full-Stokes modeling of a polar continental glacier: the dynamic characteristics response of the XD Glacier to ice thickness

  • Zhen Wu
  • Shiyin Liu
  • Huiwen Zhang
  • Xiaobo He
  • Junying Chen
  • Kai Yao
Original Paper
  • 82 Downloads

Abstract

The steady-state diagnostic and prognostic simulation for the Xiao Dongkemadi glacier (XD) of the Tibetan Plateau was performed with the thermo-mechanically-coupled-with-Full-Stokes code Elmer (http://www.csc.fi/elmer/). In this paper, some changes of glacial thermodynamic parameters caused by ice thickness and atmospheric temperature variation were simulated in view of different thickness. The purpose of this study was to fill the gap in analyzing the ice dynamic characteristic of a polar continental glacier. The diagnostic simulation revealed the following conclusions: (1) when the thickness change was small, surface velocity, ice temperature, and deviation stress variation in the bedrock showed a tendency to change with thickness, and when the terrain was gentle, the thickness variation dominated the ice velocity. (2) The ice temperature of the bedrock was high in the whole profile and reached the pressure melting point in the terminus, and it was easy to slide at the bottom, which was consistent with the measured ground penetrating radar data near the terminus. (3) The static friction forces decrease with thickness, and they showed a complex nonlinear relationship, which revealed that the deviation stress in the bottom was influenced by thickness and ice temperature at the bedrock. The prognostic simulating from 2007 to 2047 presented: (1) The simulation forecasted a shrinkage of nearly 600 m in the terminus and the longitudinal section, and wound up diminished by nearly 25% by the end of 2047; (2) the change of thickness was small at the region between 5650 and 5700 m.a.s.l, which might be related to lower atmospheric temperature; (3) thickness dominated the deviation stress (\(\sigma _{xx}\) and \(\sigma _{xz}\)) in the bottom, and the impact of the terrain was little higher compared to deviation stress (\(\sigma _{xx}\)). In other words, the glacial thickness dominated the glacial force and movement to a great extent and the low temperature at high altitude reduced the XD’s sensitivity facing future climate warming.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ren, J., Jing, Z., Pu, J., Qin, X.: Glacier variations and climate change in the central Himalaya over the past few decades. Ann. Glaciol. 43, 218–222 (2006)CrossRefGoogle Scholar
  2. 2.
    Ye, Q., Kang, S., Chen, F., Wang, J.: Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. J. Glaciol. 52, 537–545 (2006)CrossRefGoogle Scholar
  3. 3.
    Li, Z., He, Y., Yang, X., Theakstone, W.H., Jia, W., Pu, T., Liu, Q., He, X., Song, B., Zhang, N., Wang, S., Du, J.: Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quat. Int. 218, 166–175 (2008)CrossRefGoogle Scholar
  4. 4.
    Shangguan, D., Liu, S., Ding, Y., Zhang, Y., Du, E., Wu, Z.: Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993. J. Glaciol. 54, 949–951 (2008)CrossRefGoogle Scholar
  5. 5.
    Xu, X., Glasser, N.F.: Glacier sensitivity to equilibrium line altitude and reconstruction for the Last Glacial cycle: glacier modeling in the Payuwang Valley, western Nyaiqentanggulha Shan, Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 614–620 (2015)CrossRefGoogle Scholar
  6. 6.
    Zhao, L., Tian, L., Zwinger, T., Ding, R., Zong, J., Ye, Q., Moore, J.C.: Numerical simulations of Gurenhekou glacier on the Tibetan Plateau. J. Glaciol. 60, 71–82 (2014)CrossRefGoogle Scholar
  7. 7.
    Pu, J., Yao, T., Yang, M., Fujita, K.: Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydrol. Process. 22, 2953–2958 (2008)CrossRefGoogle Scholar
  8. 8.
    Fujita, K., Ohta, T., Ageta, Y.: Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau. Hydrol. Process. 21(21), 2882–2891 (2008)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., He, X., Ye, B., Wu, J.: Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its inflencing factors. J. Glaciol. Geocryol. 35, 263–270 (2013)Google Scholar
  10. 10.
    Zhang, Y.S., Yao, T., Pu, J.: The features of hydrological processes in the Dongkemadi River Basin,Tanggula Pass, Tibetan Plateau. J. Glaciol. Geocryol. 19, 214–222 (1997)Google Scholar
  11. 11.
    Yang, J.P., Ding, Y.J., YE, B., Wang, Q.: Snowmelt process on the Xiao Dongkemadi Glacier in the source region of the Yangtze River and its meteorological factors. J. Glaciol. Geocryol. 29, 258–264 (2007)Google Scholar
  12. 12.
    Hu, J., Li, Z.-W., Li, J., Zhang, L., Ding, X.-L., Zhu, J.-J., Suna, Q.: 3-D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by integrating D-InSAR, MAI and offset-tracking: case study of the Dongkemadi Glacier. Glob. Planet. Change 118, 62–68 (2014)CrossRefGoogle Scholar
  13. 13.
    Zhou, J., Li, Z., Li, X., Liu, S., Chen, Q., Xie, C., Tian, B.: Movement estimate of the Dongkemadi Glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data. Int. J. Remote Sens. 32, 6911–6928 (2011)CrossRefGoogle Scholar
  14. 14.
    Li, X., Ding, Y., Yu, Z., Mika, S., Liu, S., Shangguan, D., Lu, C.: An 80-year summer temperature history from the Xiao Dongkemadi ice core in the central Tibetan Plateau and its association with atmospheric circulation. J. Asian Earth Sci. 98, 285–295 (2015)CrossRefGoogle Scholar
  15. 15.
    Wu, Z., Liu, S., Huiwen, Z.: Numerical simulation of the flow velocity and change in the future of the SG4. Arab. J. Geosci. 9, 1–12 (2016)CrossRefGoogle Scholar
  16. 16.
    Duan, K., Yao, T., Wang, N., Liu, H.: Numerical simulation of Urumqi Glacier No. 1 change and its response to climate change analysis. Sci Bull 57, 3511–3515 (2012)Google Scholar
  17. 17.
    Zhang, T., Xiao, C., Colgan, W., Qin, X., Du, W., Sun, W., Liu, Y., Ding, M.: Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. J. Glaciol. 59, 438–448 (2013)CrossRefGoogle Scholar
  18. 18.
    Ren, D., Leslie, L.M.: Three positive feedback mechanisms for ice-sheet melting in a warming climate. J. Glaciol. 57, 1057 (2011)CrossRefGoogle Scholar
  19. 19.
    Calvo, N., Durany, J., Toja, R., Vázquez, C.: Numerical solution of a thermomechanical coupled model governing glacier evolution. Nonlinear Anal. Real World Appl. 12, 2020–2057 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Carr, S., Coleman, C.: An improved technique for the reconstruction of former glacier mass-balance and dynamics. Geomorphology 92, 76–90 (2007)CrossRefGoogle Scholar
  21. 21.
    Jarosch, A.H., Schoof, C.G., Anslow, F.S.: Restoring mass conservation to shallow ice flow models over complex terrain. Cryosphere 7, 229–240 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhen, W., Shiyin, L., Xiaobo, H.: Numerical simulation of the flow velocity and temperature of the Dongkemadi Glacier. Environ. Earth Sci. 75, 1–11 (2016)CrossRefGoogle Scholar
  23. 23.
    Rempel, A.W.: Effective stress profiles and seepage flows beneath glaciers and ice sheets. J. Glaciol. 55, 431–443 (2009)CrossRefGoogle Scholar
  24. 24.
    Zwinger, T., Moore, J.C.: Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard. Cryosphere Discuss. 3, 477–511 (2009)CrossRefGoogle Scholar
  25. 25.
    Pattyn, F., Delcourt, C., Samyn, D., de Smedt, B., Nolan, M.: Bed properties and hydrological conditions underneath McCall Glacier, Alaska, USA. Ann. Glaciol. 50, 80–84 (2009)CrossRefGoogle Scholar
  26. 26.
    Denis, M., Guiraud, M., Konaté, M., Buoncristiani, J.F.: Subglacial deformation and water-pressure cycles as a key for understanding ice stream dynamics: evidence from the Late Ordovician succession of the Djado Basin (Niger). Int. J. Earth Sci. 99, 1399–1425 (2010)CrossRefGoogle Scholar
  27. 27.
    Willis, I., Mair, D., Hubbard, B., Fischer, U.H., Nienow, P., Hubbard, A.: Seasonal variations in ice deformation and basal motion across the tongue of Haut Glacier d’Arolla, Switzerland. Ann. Glaciol. 36, 157–167 (2003)CrossRefGoogle Scholar
  28. 28.
    Zmitrowicz, A.: Glaciers and laws of friction and sliding. Acta Mech. 166, 185–206 (2003)CrossRefzbMATHGoogle Scholar
  29. 29.
    Paoli, L.D., Flowers, G.E.: Dynamics of a small surge-type glacier using one-dimensional geophysical inversion. J. Glaciol. 55, 1101–1112 (2009)CrossRefGoogle Scholar
  30. 30.
    Dunse, T., Greve, R., Schuler, T.V., Hagen, J.O.: Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard. J. Glaciol. 57, 247–259 (2011)CrossRefGoogle Scholar
  31. 31.
    Flowers, G.E., Roux, N., Pimentel, S., Schoof, C.G.: Present dynamics and future prognosis of a slowly surging glacier. Cryosphere 5, 299–313 (2011)CrossRefGoogle Scholar
  32. 32.
    Lenga, W., Jub, L., Xiea, Y., Cuia, T., Gunzburgerd, M.: Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation. J. Comput. Phys. 274, 299–311 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Pattyn, F.: Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol. 54, 353–361 (2008)CrossRefGoogle Scholar
  34. 34.
    Zhang, H., Ju, L., Gunzburger, M., Ringler, T., Price, S.: Coupled models and parallel simulations for three-dimensional Full-Stokes ice sheet modeling. Numer. Math. Theory Methods Appl. 4, 359–381 (2011)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Kirchner, N., Ahlkrona, J., Gowan, E.J., Lötstedt, P., Lea, J.M., Noormets, R., von Sydow, L., Dowdeswell, J.A., Benham, T.: Shallow ice approximation, second order shallow ice approximation, and full Stokes models: a discussion of their roles in palaeo-ice sheet modelling and development. Quat. Sci. Rev. 135, 103–114 (2016)CrossRefGoogle Scholar
  36. 36.
    Seddik, H., Greve, R., Zwinger, T., Gillet-Chaulet, F., Gagliardini, O.: Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. J. Glaciol. 58, 427–440 (2012)CrossRefGoogle Scholar
  37. 37.
    Pollard, D., DeConto, R.M.: Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009)CrossRefGoogle Scholar
  38. 38.
    Glen, J.W.: The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. Int. Assoc. Sci. Hydrol. 47, 171–183 (1958)Google Scholar
  39. 39.
    Jiang, G., gao, P., Rao, S., Zhang, L.: Compilation of heat flow in the continental area of China. Chin. J. Geophys. 59, 2892–2910 (2016)Google Scholar
  40. 40.
    Qiao, C.J., He, X.B., Ye, B.S.: Study of the degree-day factors for snow and ice on the Dongkemadi Glacier, Tanggula range. J. Glaciol. Geocryol. 32, 257–264 (2010)Google Scholar
  41. 41.
    Herman, F., Anderson, B., Leprince, S.: Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images. J. Glaciol. 57, 197–207 (2011)CrossRefGoogle Scholar
  42. 42.
    Dupont, T.K., Alley, R.B.: Conditions for the reversal of ice/air surface slope on ice streams and shelves: a model study. Ann. Glaciol. 40, 139–144 (2005)CrossRefGoogle Scholar
  43. 43.
    Zhang, T., Ding, M., Xiao, C., Zlliheng, D.: Temperate ice layer found in the upper area of Jima Yangzong Glacier, the headstream of Yarlung Zangbo River. Sci. Bull. 61, 619–621 (2016)CrossRefGoogle Scholar
  44. 44.
    zhen, W., Shiyin, L., Shiqiang, Z., Honglang, X.: Internal structure and trend of glacier change assessed by geophysical investigations. Environ. Earth Sci. 68, 1513–1525 (2013)CrossRefGoogle Scholar
  45. 45.
    Irvine-Fynn, T.D.L., Moorman, B.J., Williams, J.L.M., Walter, F.S.A.: Seasonal changes in ground-penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada. Earth Surf. Process. Landf. 31, 892–909 (2006)CrossRefGoogle Scholar
  46. 46.
    Fudge, T.J., Harper, J.T., Humphrey, N.F., Pfeffer, W.T.: Rapid glacier sliding, reverse ice motion and subglacial water pressure during an autumn rainstorm. Ann. Glaciol. 50, 101–108 (2009)CrossRefGoogle Scholar
  47. 47.
    Trombotto, D., Borzotta, E.: Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Reg. Sci. Technol. 55, 321–330 (2009)CrossRefGoogle Scholar
  48. 48.
    Scherler, M., Schneider, S., Hoelzle, M., Hauck, C.: A two-sided approach to estimate heat transfer processes within the active layer of rock glacier Murtèl–Corvatsch. Earth Surf. Dyn. Discuss. 1, 141–175 (2013)CrossRefGoogle Scholar
  49. 49.
    Dolezal, J., Altman, J., Vetrova, V.P., Hara, T.: Linking two centuries of tree growth and glacier dynamics with climate changes in Kamchatka. Clim. Change 124, 207–220 (2014)CrossRefGoogle Scholar
  50. 50.
    Gulley, J.D., Benn, D.I., Screaton, E., Martin, J.: Mechanisms of englacial conduit formation and their implications for subglacial recharge. Quat. Sci. Rev. 28, 1984–1999 (2009)CrossRefGoogle Scholar
  51. 51.
    Bartholomaus, T.C., Anderson, R.S., Anderson, S.P.: Response of glacier basal motion to transient water storage. Nat. Geosci. 1, 33–37 (2007)CrossRefGoogle Scholar
  52. 52.
    Harper, J.T., Humphrey, N.F., Pfeffer, W.T., Lazar, B.: Two modes of accelerated glacier sliding related to water. Geophys. Res. Lett. 34, L12503 (2007)CrossRefGoogle Scholar
  53. 53.
    Pourrier, J., Jourde, H., Kinnard, C., Gascoin, S., Monnier, S.: Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: the case of the Tapado glacier, dry Andes of Chile (30o). J. Hydrol. 519, 1068–1083 (2014)CrossRefGoogle Scholar
  54. 54.
    Paul, F.: The influence of changes in glacier extent and surface elevation on modeled mass balance. Cryosphere 4, 569–581 (2010)CrossRefGoogle Scholar
  55. 55.
    Nye, J.F.: The distribution of stress and velocity in glaciers and ice-sheets. Proc. R. Soc. A Math. Phys. Eng. Sci. 239, 113–133 (1957)CrossRefzbMATHGoogle Scholar
  56. 56.
    Gerbaux, M., Genthon, C., Etchevers, P., Vincent, C., Dedieu, J.P.: Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change. J. Glaciol. 51, 561–572 (2005)CrossRefGoogle Scholar
  57. 57.
    Liu, Q., Liu, S.: Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim. Dyn. 46, 1–14 (2015)Google Scholar
  58. 58.
    Harper, J.T., Humphrey, N.F., Greenwood, M.C.: Basal conditions and glacier motion during the winter/spring transition, Worthington Glacier, Alaska, U.S.A. J. Glaciol. 48, 42–50 (2002)CrossRefGoogle Scholar
  59. 59.
    Schoof, C.: Bed topography and surges in ice streams. Geophys. Res. Lett. 31, L06401 (2004)CrossRefGoogle Scholar
  60. 60.
    Ikeda, A.: Rock glacier dynamics near the lower limit of mountain permafrost in the Swiss Alps. University of Tsukuba (2004)Google Scholar
  61. 61.
    Benn, D.I., Hulton, N.R.J., Mottram, R.H.: ’Calving laws’, ’sliding laws’ and the stability of tidewater glaciers. Ann. Glaciol. 46, 123–130 (2007)CrossRefGoogle Scholar
  62. 62.
    Bartholomaus, T.C., Anderson, R.S., Anderson, S.P.: Response of glacier basal motion to transient water storage. Nat. Geosci. 1, 33–37 (2007)CrossRefGoogle Scholar
  63. 63.
    Schafer, M., Zwinger, T., Christoffersen, P., Gillet-Chaulet, F., Laakso, K., Pettersson, R., Pohjola, V.A., Strozzi, T., Moore, J.C.: Sensitivity of basal conditions in an inverse model: Vestfonna ice cap, Nordaustlandet/Svalbard. Cryosphere 6, 771–781 (2012)CrossRefGoogle Scholar
  64. 64.
    Paterson, W.S.B.: The Physics of Glaciers. Pergamon, Oxford (1994)Google Scholar
  65. 65.
    Greve, R.: Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J. Clim. 10, 901–918 (1997)CrossRefGoogle Scholar
  66. 66.
    Pattyn, F.: Transient glacier response with a higher-order numerical ice-flow model. J. Glaciol. 48, 467–477 (2002)CrossRefGoogle Scholar
  67. 67.
    Marmo, B.A., Blackford, J.R., Jeffree, C.E.: Ice friction, wear features and their dependence on sliding velocity and temperature. J. Glaciol. 51, 391–398 (2005)CrossRefGoogle Scholar
  68. 68.
    Pattyn, F.: Ice-sheet modelling at different spatial resolutions: focus on the grounding zone. Ann. Glaciol. 31, 211–216 (2000)CrossRefGoogle Scholar
  69. 69.
    Murray, T., Strozzi, T., Luckman, A., Jiskoot, H., Christakos, P.: Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J. Geophys. Res. 108, 1–15 (2003)CrossRefGoogle Scholar
  70. 70.
    Ingólfsson, Ó., Benediktsson, Í.Ö., Schomacker, A., Kjær, K.H., Brynjólfsson, S., Jónsson, S.A., Korsgaard, N.J., Johnson, M.D.: Glacial geological studies of surge-type glaciers in Iceland—research status and future challenges. Earth-Sci. Rev. 152, 37–49 (2016)CrossRefGoogle Scholar
  71. 71.
    Murray, T., James, T.D., Macheret, Y., LavrentievGlazovsky, A.: Geometric changes in a Tidewater Glacier in Svalbard during its surge cycle. Arct. Antarct. Alp. Res. 44, 359–367 (2016)CrossRefGoogle Scholar
  72. 72.
    Li, Z., He, Y., An, W., Song, L., Zhang, W., Catto, N.: Climate and glacier change in southwestern China during the past several decades. Environ. Res. Lett. 045404, 24 (2011)Google Scholar
  73. 73.
    Li, Z., Li, H., Chen, Y.: Mechanisms and simulation of accelerated shrinkage of continental glaciers: A case study of Urumqi Glacier No. 1 in eastern Tianshan, Central Asia. J. Earth Sci. 22, 423–430 (2011)CrossRefGoogle Scholar
  74. 74.
    Aizen, V.B., Kuzmichenok, V.A., Surazakov, A.B., Aizen, E.M.: Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Glob. Planet. Change 56, 328–340 (2007)CrossRefGoogle Scholar
  75. 75.
    Xu, J., Liu, S., Zhang, S., Guo, W., Wang, J.: Recent changes in glacial area and volume on Tuanjiefeng Peak Region of Qilian Mountains, China. PloS ONE 8, e70574 (2013)CrossRefGoogle Scholar
  76. 76.
    Gessese, A., Heining, C., Sellier, M., Mc Nish, R., Rackc, W.: Direct reconstruction of glacier bedrock from known free surface data using the one-dimensional shallow ice approximation. Geomorphology 228, 356–371 (2015)CrossRefGoogle Scholar
  77. 77.
    Clarke, G.K.C., Goodman, R.H.: Radio echo soundings and ice-temperature measurements in a surge-type glacier. J. Glaciol. 14(70), 71–78 (1975)CrossRefGoogle Scholar
  78. 78.
    Flowers, G.E., Clarke, G.K.C.: Surface and bed topography of Trapridge Glacier, Yukon Territory, Canada: digital elevation models and derived hydraulic geometry. J. Glaciol. 45, 165–174 (1999)CrossRefGoogle Scholar
  79. 79.
    Flowers, G.E., Marshall, S.J., Björnsson, H., Clarke, G.K.C.: Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries. J. Geophys. Res 110, F02011 (2005)CrossRefGoogle Scholar
  80. 80.
    Murton, J.B., Whiteman, C.A., Waller, R.I., Pollard, W.H., Clark, I.D., Dallimore, S.R.: Basal ice facies and supraglacial melt-out till of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, western Arctic Canada. Quat. Sci. Rev. 24, 681–708 (2005)CrossRefGoogle Scholar
  81. 81.
    Wohlleben, T., Sharp, M., Bush, A.: Factors influencing the basal temperatures of a High Arctic polythermal glacier. Ann. Glaciol. 50, 9–16 (2009)CrossRefGoogle Scholar
  82. 82.
    Van der Veen, C.J., Leftwich, T., Von Frese, R., Csatho, B.M., Li, J.: Subglacial topography and geothermal heat flux: potential interactions with drainage of the Greenland ice sheet. Geophys. Res. Lett. 34, L12501 (2007)CrossRefGoogle Scholar
  83. 83.
    Benn, D., Gulley, J., Luckman, A., Adamek, A., Glowacki, P.S.: Englacial drainage systems formed by hydrologically driven crevasse propagation. J. Glaciol. 55, 513–523 (2009)CrossRefGoogle Scholar
  84. 84.
    Bingham, R.G., Nienow, P.W., Sharp, M.J., Boon, S.: Subglacial drainage processes at a High Arctic polythermal valley glacier. J. Glaciol. 51, 15–24 (2005)CrossRefGoogle Scholar
  85. 85.
    Blatter, H.: Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stresses. J. Glaciol. 41, 333–344 (1995)CrossRefGoogle Scholar
  86. 86.
    Kavanaugh, J.L., Clarke, G.K.C.: Abrupt glacier motion and reorganization of basal shear stress following the establishment of a connected drainage system. J. Glaciol. 47, 472–480 (2001)CrossRefGoogle Scholar
  87. 87.
    Price, S.F., Waddington, E.D., Conway, H.: A full-stress, thermomechanical flow band model using the finite volume method. J. Geophys. Res. Earth Surf. 112, F03020 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Zhen Wu
    • 1
  • Shiyin Liu
    • 2
  • Huiwen Zhang
    • 3
  • Xiaobo He
    • 4
  • Junying Chen
    • 1
  • Kai Yao
    • 1
  1. 1.Lanzhou Institute of SeismologyChina Earthquake AdministrationLanzhouChina
  2. 2.The Institute of International Rivers and Eco-SecurityYunnan UniversityKunmingChina
  3. 3.State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster CombatingGansu Desert Control Research InstituteLanzhouChina
  4. 4.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina

Personalised recommendations