Advertisement

Acta Mechanica

, Volume 229, Issue 6, pp 2521–2538 | Cite as

Modeling dynamic flows of grain–fluid mixtures by coupling the mixture theory with a dilatancy law

Original Paper
  • 53 Downloads

Abstract

A depth-averaged two-velocity grain–fluid mixture model is proposed to describe flows of grain–fluid mixtures. Motivated by the experimental observations, the proposed model considers that the granular and the fluid phases are moving with different velocities, and the velocity difference between the granular phase and the fluid phase is coupled with the granular dilatancy that is described by a granular dilatancy law. The characteristics of flows allow to formulate a simpler depth-averaged PDE system. To scrutinize the proposed equations, an analysis for steady flows in rectangular channels is performed, which reproduces the cross-stream velocity profiles commonly observed in fields. Additionally, a uniform flow is investigated to illustrate the effects of the granular dilatancy on the velocities, flow depth, and volume fractions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media, Between Fluid and Solid. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  2. 2.
    Bouchut, F., Fernandez-Nieto, E.D., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model for fluidized granular flows with dilatancy effects. https://hal-upec-upem.archives-ouvertes.fr/hal-01161930 (2016)
  3. 3.
    George, D.L., Iverson, R.M.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, Proc. R. Soc. Lond. A 470, 2170 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hungr, O.: Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surf. Process. Landf. 25, 483–495 (2000)CrossRefGoogle Scholar
  5. 5.
    Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. Lond. A 470, 20130819 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 106(B1), 537–552 (2001)CrossRefGoogle Scholar
  7. 7.
    Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., Brien, D.L.: Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516 (2000)CrossRefGoogle Scholar
  8. 8.
    Kaitna, R., Hsu, L., Rickenmann, D., Dietrich, W.E.: On the development of an unsaturated front of debris flows. In: Genevois, R., Hamilton, D.L., Prestininzi, A. (eds.) Italian Journal of Engineering Geology and Environment-Book. 5th International Conference on Debris-Flow Hazards: Mitigation, Mechanics, Prediction and Assessment, Padua, 14–17 June 2011, pp. 351–358. Casa Editrice Università La Sapienza (2011)Google Scholar
  9. 9.
    Meng, X., Wang, Y.: Modelling and numerical simulation of two-phase debris flows. Acta Geotech. 11, 1027–1045 (2016)CrossRefGoogle Scholar
  10. 10.
    Pailha, M., Nicolas, M., Pouliquen, O.: Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 111701 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Pailha, M., Pouliquen, O.: A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115–135 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pierson, T.C.: Flow behavior of channelized debris flows, Mount St. Helens, Washington. In: Abrahams, A.D. (ed.) Hillslope Processes, pp. 269–296. Allen and Unwin press, Winchester (1986)Google Scholar
  13. 13.
    Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Proc. R. Soc. Lond. A 363(1832), 1573–1601 (2005)MathSciNetMATHGoogle Scholar
  14. 14.
    Prochnow, M., Chevoir, F., Albertelli, M.: Dense granular flows down a rough inclined plane. In: Proceedings of XIII International Congress on Rheology, Cambridge, UK (2000)Google Scholar
  15. 15.
    Reynolds, O.: Dilatancy. Nature 33, 429–430 (1886)Google Scholar
  16. 16.
    Rondon, L., Pouliquen, O., Aussillous, P.: Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011)CrossRefGoogle Scholar
  17. 17.
    Roux, S., Radjai, F.: Texture-dependent rigid plastic behavior. In: Herrmann, H.J. et al. (eds.) Proceedings: Physics of Dry Granular Media, September 1997, Cargése, France, pp. 305–311. Kluwer (1998)Google Scholar
  18. 18.
    Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Schaeffer, D.G., Iverson, R.M.: Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM Appl. Math. 69, 768–786 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Truesdell, C.: Rational Thermodynamics, 2nd edn. Springer, New York (1984)CrossRefMATHGoogle Scholar
  21. 21.
    Wang, Y., Hutter, K., Pudasaini, S.P.: The Savage–Hutter theory: a system of partial differential equations for avalanche flows of snow, debris, and mud. J. App. Math. Mech. 84(8), 507–527 (2004)MathSciNetMATHGoogle Scholar
  22. 22.
    Wang, Y., Hutter, K.: A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta 38, 214–233 (1999)CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Hutter, K.: Comparisons of serval numerical methods with respect to convectively-dominated problems. Int. J. Numer. Methods Fluids 37, 721–745 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Offshore Research and EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations