Advertisement

Acta Mechanica

, Volume 229, Issue 4, pp 1517–1536 | Cite as

Steady vibration problems in the theory of elasticity for materials with double voids

  • Merab Svanadze
Original Paper

Abstract

In the present paper, the linear theory of elasticity for materials with double voids is considered. Some basic properties of plane harmonic waves of this theory are established. The internal boundary value problems (BVPs) of steady vibrations are formulated. On the basis of Green’s tensors, the internal BVPs are reduced to the equivalent Fredholm’s integral equations of the second kind with symmetrical kernel. The existence of eigenfrequencies of the internal BVPs of steady vibrations is proved. Finally, the formula of the asymptotic distribution of these eigenfrequencies is obtained.

Mathematics Subject Classification

74F10 74G30 74J05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achenbach, J.D.: Wave Propagation in Elastic Solids. American Elsevier Publishing Company, Inc, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s law: spectral properties of the Laplacian in mathematics and physics. In: Arendt, W., Schleich, W.P. (eds.) Mathematical Analysis of Evolution, Information, and Complexity, pp. 1–77. WILEY- VCH Verlag GmbH & Co. KGaA, Weinheim (2009)CrossRefGoogle Scholar
  3. 3.
    Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993)CrossRefGoogle Scholar
  4. 4.
    Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)CrossRefzbMATHGoogle Scholar
  5. 5.
    Berryman, J.G., Wang, H.F.: Elastic wave propagation and attenuation in a double porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci. 37, 63–78 (2000)CrossRefGoogle Scholar
  6. 6.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefzbMATHGoogle Scholar
  7. 7.
    de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Burchuladze, T.V., Gegelia, T.G.: The Development of the Potential Methods in the Elasticity Theory. Metsniereba, Tbilisi (1985)zbMATHGoogle Scholar
  9. 9.
    Carleman, T.: Über die asymptotische Verteilung der Eigenwerte partieller Differentialgleichungen. Ber. der Sächs. Akad. d. Wiss. Leipzig 88, 119–132 (1936)zbMATHGoogle Scholar
  10. 10.
    Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)CrossRefGoogle Scholar
  12. 12.
    Cowin, S.C., Cardoso, L.: Blood and interstitial flow in the hierarchical pores pace architecture of bone tissue. J. Biomech. 48, 842–854 (2015)CrossRefGoogle Scholar
  13. 13.
    Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gegelia, T., Jentsch, L.: Potential methods in continuum mechanics. Georgian Math. J. 1, 599–640 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gelet, R., Loret, B., Khalili, N.: Borehole stability analysis in a thermoporoelastic dual-porosity medium. Int. J. Rock Mech. Min. Sci. 50, 65–76 (2012)CrossRefGoogle Scholar
  16. 16.
    Gentile, M., Straughan, B.: Acceleration waves in nonlinear double porosity elasticity. Int. J. Eng. Sci. 73, 10–16 (2013)CrossRefGoogle Scholar
  17. 17.
    Ieşan, D.: Method of potentials in elastostatics of solids with double porosity. Int. J. Eng. Sci. 88, 118–127 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stress. 37, 1017–1036 (2014)CrossRefGoogle Scholar
  19. 19.
    Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30, 2268 (2003)Google Scholar
  20. 20.
    Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program Sci. Transl, Jerusalem (1965)Google Scholar
  21. 21.
    Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam, New York, Oxford (1979)Google Scholar
  22. 22.
    Nunziato, J.W., Cowin, S.C.: A non-linear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pleijel, A.: Propriétés asymptotiques des fonctions et valeurs propres de certains problems de vibrations. Arkiv för Math. Astr. och Fysik 27A, 1–100 (1940)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Multiscale modeling of a fluid saturated medium with double porosity: relevance to the compact bone. J. Mech. Phys. Solids 60, 857–881 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Scarpetta, E., Svanadze, M.: Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity. J. Elast. 120, 67–86 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Scarpetta, E., Svanadze, M., Zampoli, V.: Fundamental solutions in the theory of thermoelasticity for solids with double porosity. J. Therm. Stress. 37, 727–748 (2014)CrossRefGoogle Scholar
  27. 27.
    Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)zbMATHGoogle Scholar
  28. 28.
    Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Straughan, B.: Convection with Local Thermal Non-equilibrium and Microfluidic Effects. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  30. 30.
    Svanadze, M.: Asymptotic distribution of eigenfunctions and eigenvalues of the boundary value problems of linear theory of elastic mixtures. Georgian Math. J. 3, 177–200 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Svanadze, M.: Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math. 122, 461–471 (2012)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica 49, 2099–2108 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Svanadze, M.: Plane waves, uniqueness theorems and existence of eigen frequencies in the theory of rigid bodies with a double porosity structure. In: Albers, B., Kuczma, M. (eds.) Continuous Media with Microstructure 2, pp. 287–306. Springer, Basel (2016)CrossRefGoogle Scholar
  34. 34.
    Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Nachr. Ges. Wiss. Göttingen 1911, 110–117 (1911)zbMATHGoogle Scholar
  35. 35.
    Weyl, H.: Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung. J. Reine Angew. Math. 141, 1–11 (1912)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Kórpers. Rend. Circolo Mat. Palermo 39, 1–49 (1915)CrossRefzbMATHGoogle Scholar
  37. 37.
    Wilson, R.K., Aifantis, E.C.: On the theory of consolidation with double porosity. Int. J. Eng. Sci. 20, 1009–1035 (1982)CrossRefzbMATHGoogle Scholar
  38. 38.
    Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Fundamental and Interdisciplinary Mathematics ResearchIlia State UniversityTbilisiGeorgia

Personalised recommendations