Skip to main content
Log in

Steady vibration problems in the theory of elasticity for materials with double voids

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, the linear theory of elasticity for materials with double voids is considered. Some basic properties of plane harmonic waves of this theory are established. The internal boundary value problems (BVPs) of steady vibrations are formulated. On the basis of Green’s tensors, the internal BVPs are reduced to the equivalent Fredholm’s integral equations of the second kind with symmetrical kernel. The existence of eigenfrequencies of the internal BVPs of steady vibrations is proved. Finally, the formula of the asymptotic distribution of these eigenfrequencies is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. American Elsevier Publishing Company, Inc, New York (1975)

    MATH  Google Scholar 

  2. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s law: spectral properties of the Laplacian in mathematics and physics. In: Arendt, W., Schleich, W.P. (eds.) Mathematical Analysis of Evolution, Information, and Complexity, pp. 1–77. WILEY- VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    Chapter  Google Scholar 

  3. Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993)

    Article  Google Scholar 

  4. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  5. Berryman, J.G., Wang, H.F.: Elastic wave propagation and attenuation in a double porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci. 37, 63–78 (2000)

    Article  Google Scholar 

  6. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  7. de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Burchuladze, T.V., Gegelia, T.G.: The Development of the Potential Methods in the Elasticity Theory. Metsniereba, Tbilisi (1985)

    MATH  Google Scholar 

  9. Carleman, T.: Über die asymptotische Verteilung der Eigenwerte partieller Differentialgleichungen. Ber. der Sächs. Akad. d. Wiss. Leipzig 88, 119–132 (1936)

    MATH  Google Scholar 

  10. Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  12. Cowin, S.C., Cardoso, L.: Blood and interstitial flow in the hierarchical pores pace architecture of bone tissue. J. Biomech. 48, 842–854 (2015)

    Article  Google Scholar 

  13. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  14. Gegelia, T., Jentsch, L.: Potential methods in continuum mechanics. Georgian Math. J. 1, 599–640 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gelet, R., Loret, B., Khalili, N.: Borehole stability analysis in a thermoporoelastic dual-porosity medium. Int. J. Rock Mech. Min. Sci. 50, 65–76 (2012)

    Article  Google Scholar 

  16. Gentile, M., Straughan, B.: Acceleration waves in nonlinear double porosity elasticity. Int. J. Eng. Sci. 73, 10–16 (2013)

    Article  Google Scholar 

  17. Ieşan, D.: Method of potentials in elastostatics of solids with double porosity. Int. J. Eng. Sci. 88, 118–127 (2015)

    Article  MathSciNet  Google Scholar 

  18. Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stress. 37, 1017–1036 (2014)

    Article  Google Scholar 

  19. Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30, 2268 (2003)

    Google Scholar 

  20. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program Sci. Transl, Jerusalem (1965)

  21. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam, New York, Oxford (1979)

    Google Scholar 

  22. Nunziato, J.W., Cowin, S.C.: A non-linear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    Article  MATH  Google Scholar 

  23. Pleijel, A.: Propriétés asymptotiques des fonctions et valeurs propres de certains problems de vibrations. Arkiv för Math. Astr. och Fysik 27A, 1–100 (1940)

    MathSciNet  MATH  Google Scholar 

  24. Rohan, E., Naili, S., Cimrman, R., Lemaire, T.: Multiscale modeling of a fluid saturated medium with double porosity: relevance to the compact bone. J. Mech. Phys. Solids 60, 857–881 (2012)

    Article  MathSciNet  Google Scholar 

  25. Scarpetta, E., Svanadze, M.: Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity. J. Elast. 120, 67–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scarpetta, E., Svanadze, M., Zampoli, V.: Fundamental solutions in the theory of thermoelasticity for solids with double porosity. J. Therm. Stress. 37, 727–748 (2014)

    Article  Google Scholar 

  27. Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)

    MATH  Google Scholar 

  28. Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  29. Straughan, B.: Convection with Local Thermal Non-equilibrium and Microfluidic Effects. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  30. Svanadze, M.: Asymptotic distribution of eigenfunctions and eigenvalues of the boundary value problems of linear theory of elastic mixtures. Georgian Math. J. 3, 177–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Svanadze, M.: Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math. 122, 461–471 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica 49, 2099–2108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Svanadze, M.: Plane waves, uniqueness theorems and existence of eigen frequencies in the theory of rigid bodies with a double porosity structure. In: Albers, B., Kuczma, M. (eds.) Continuous Media with Microstructure 2, pp. 287–306. Springer, Basel (2016)

    Chapter  Google Scholar 

  34. Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Nachr. Ges. Wiss. Göttingen 1911, 110–117 (1911)

    MATH  Google Scholar 

  35. Weyl, H.: Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung. J. Reine Angew. Math. 141, 1–11 (1912)

    MathSciNet  MATH  Google Scholar 

  36. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Kórpers. Rend. Circolo Mat. Palermo 39, 1–49 (1915)

    Article  MATH  Google Scholar 

  37. Wilson, R.K., Aifantis, E.C.: On the theory of consolidation with double porosity. Int. J. Eng. Sci. 20, 1009–1035 (1982)

    Article  MATH  Google Scholar 

  38. Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Svanadze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svanadze, M. Steady vibration problems in the theory of elasticity for materials with double voids. Acta Mech 229, 1517–1536 (2018). https://doi.org/10.1007/s00707-017-2077-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2077-z

Mathematics Subject Classification

Navigation