Advertisement

Acta Mechanica

, Volume 229, Issue 4, pp 1773–1781 | Cite as

Symmetry and conserved quantities for non-material volumes

  • Wen-An Jiang
  • Li-Li Xia
Original Paper

Abstract

This paper investigates the Lie symmetry and conserved quantities of non-material volumes. The Lie symmetrical determining equations of the system are presented by introducing the invariance of equations of motion for the system under general infinitesimal transformation of Lie groups. The structure equations and the form of conserved quantities are calculated. And three kinds of conserved quantities, i.e., Noether, Lutzky and Mei conserved quantities of the systems, are derived. In addition, the Hojman conserved quantity of the systems is proposed under the special infinitesimal transformations. An example is given to illustrate the application of the method and result, and four kinds of conserved quantities are obtained under the Lie symmetrical transformations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11702119, 51779109 and 11502071), the Natural Science Foundation of Jiangsu Province (Nos. BK20170565 and BK20171306) and the Innovation Foundation of Jiangsu University of Science and Technology (1012931609 and 1014801501-6).

References

  1. 1.
    Cveticanin, L.: Dynamics of Bodies with Time-Variable Mass. Springer, Basel (2016)CrossRefzbMATHGoogle Scholar
  2. 2.
    Irschik, H., Holl, H.J.: Mechanics of variable-mass systems-Part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57, 145–160 (2004)CrossRefGoogle Scholar
  3. 3.
    Irschik, H., Holl, H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153, 231–248 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Casetta, L., Pesce, C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224, 919–924 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Casetta, L., Pesce, C.P.: The inverse problem of Lagrangian mechanics for Meshchersky’s equation. Acta Mech. 225, 1607–1623 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Casetta, L.: The inverse problem of Lagrangian mechanics for a non-material volume. Acta Mech. 226, 1–15 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Irschik, H., Holl, H.J.: Lagrange’s equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics. Acta Mech. 226, 63–79 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Casetta, L., Irschik, H., Pesce, C.P.: A generalization of Noether’s theorem for a non-material volume. Z. Angew. Math. Mech. 96, 696–706 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Noether, A.E.: Invariante variations probleme. Nachr. Akad. Wiss. Göttingen Math. Phys. KI. II, 235-237 (1918)Google Scholar
  10. 10.
    Djukić, D.S., Vujanović, B.D.: Noether’s theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Vujanovic, B.: A study of conservation laws of dynamical systems by means of the differential variational principles of Jourdain and Gauss. Acta Mech. 65, 63–80 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, Z.P., Li, X.: Generalized Noether theorem and Poincaré invariant for nonholonomic system. Int. J. Theor. Phys. 29, 765–771 (1990)CrossRefzbMATHGoogle Scholar
  13. 13.
    Luo, S.K.: Generalized Noether theorem of variable mass high-order nonholonomic mechanical system in noninertial reference frames. Chin. Sci. Bull. 36, 1930–1932 (1991)Google Scholar
  14. 14.
    Zhou, Y., Zhang, Y.: Noether’s theorems of a fractional Birkhoffian system within Riemann Liouville derivatives. Chin. Phys. B 23, 124502 (2014)CrossRefGoogle Scholar
  15. 15.
    Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A Math. Gen. 12, 973–981 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sen, T., Tabor, M.: Lie symmetries of the Lorenz model. Phys. D 44, 313–339 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mei, F.X.: Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mech. 141, 135–148 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mei, F.X.: Form invariance of Lagrange system. J. Beijing Inst. Tech. 9, 120–124 (2000)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Xia, L.L., Wang, J., Hou, Q.B., Li, Y.C.: Lie-form invariance of nonholonomic mechanical systems. Chin. Phys. 15, 0467 (2006)CrossRefGoogle Scholar
  20. 20.
    Fu, J.L., Chen, L.Q.: On Nother symmetries and form invariance of mechanico-electrical systems. Phys. Lett. A 331, 138–152 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xia, L.L., Chen, L.Q.: Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices. Chin. Phys. B 21, 070202 (2012)CrossRefGoogle Scholar
  22. 22.
    Xia, L.L., Chen, L.Q., Fu, J.L., Wu, J.H.: Symmetries and variational calculation of discrete Hamiltonian systems. Chin. Phys. B 23, 070201 (2014)CrossRefGoogle Scholar
  23. 23.
    Lutzky, M.: Conserved quantities and velocity dependent symmetries in Lagrangian dynamics. Int. J. Non Linear Mech. 33, 393–396 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lutzky, M.: New derivation of a conserved quantity for Lagrangian systems. J. Phys. A Math. Gen. 31, L721–L722 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fu, J.L., Chen, L.Q.: Non-Noether symmetries and conserved quantities of nonconservative dynamical systems. Phys. Lett. A 317, 255–259 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hojman, S.: A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A Math. Gen. 25, L291–L295 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chen, X.W., Liu, C., Mei, F.X.: Conformal invariance and Hojman conserved quantities of first order Lagrange systems. Chin. Phys. B 17, 3180–3184 (2008)CrossRefGoogle Scholar
  28. 28.
    Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xia, L.L., Chen, L.Q.: Conformal invariance of Mei symmetry for discrete Lagrangian systems. Acta Mech. 224, 2037–2043 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Xia, L.L., Chen, L.Q.: Mei symmetries and conserved quantities for non-conservative Hamiltonian difference systems with irregular lattices. Nonlinear Dyn. 70, 1223–1230 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, F., Li, W., Zhang, Y.Y., Xue, X.C., Jia, L.Q.: Conformal invariance and Mei conserved quantity for generalized Hamilton systems with additional terms. Nonlinear Dyn. 84, 1909–1913 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, P., Xue, Y.: Conformal invariance of Mei symmetry and conserved quantities of Lagrange equation of thin elastic rod. Nonlinear Dyn. 83, 1815–1822 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Engineering MechanicsJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.College of Mechanical EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations