Advertisement

Acta Mechanica

, Volume 229, Issue 4, pp 1631–1648 | Cite as

Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination

  • A. Haghani
  • M. Mondali
  • S. A. Faghidian
Original Paper

Abstract

Delamination is a well-known defect mode that can arise in the manufacturing process of laminated composite plates. Due to the importance of analyzing the destructive effects of delamination on the mechanical behavior of composite plates, the flexural analysis of circular laminated composite plates with circular delamination is presented here. The governing equilibrium equations of laminated plates are first determined using third-order shear deformation theory. Both the linear and geometrically nonlinear strain states are considered, and the variational approach with a moving boundary is employed to derive the equilibrium equations. The governing equations in terms of the displacement field are then solved using the Galerkin method and the spectral homotopy analysis method to obtain the linear and nonlinear strain states, respectively. The effect of the variations of the elastic material properties on the strain energy release rate is also comprehensively studied. The results of the present study are consistent with the results of other methods found in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohammadi, B., Shahabi, F.: On computational modeling of postbuckling behavior of composite laminates containing single and multiple through-the-width delaminations using interface elements with cohesive law. Eng. Fract. Mech. 152, 88–104 (2016).  https://doi.org/10.1016/j.engfracmech.2015.04.005 CrossRefGoogle Scholar
  2. 2.
    Baek, H.M., Hwang, S.K., Joo, H.S., Im, Y.-T., Son, I.-H., Bae, C.M.: The effect of a non-circular drawing sequence on delamination characteristics of pearlitic steel wire (1980–2015). Mater. Des. 62, 137–148 (2014).  https://doi.org/10.1016/j.matdes.2014.05.014 CrossRefGoogle Scholar
  3. 3.
    Guruprasad, P.J., Thejasvi, M., Harursampath, D.: Nonlinear analysis of a thin pre-twisted and delaminated anisotropic strip. Acta Mech. 225(10), 2815–2832 (2014).  https://doi.org/10.1007/s00707-014-1203-4 CrossRefGoogle Scholar
  4. 4.
    Nanda, N.: Static analysis of delaminated composite shell panels using layerwise theory. Acta Mech. 225(10), 2893–2901 (2014).  https://doi.org/10.1007/s00707-014-1200-7 CrossRefzbMATHGoogle Scholar
  5. 5.
    Gaitonde, V.N., Karnik, S.R., Rubio, J.C., Correia, A.E., Abro, A.M., Davim, J.P.: Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J. Mater. Process. Technol. 203(13), 431–438 (2008).  https://doi.org/10.1016/j.jmatprotec.2007.10.050 CrossRefGoogle Scholar
  6. 6.
    Li, D., Tang, G., Zhou, J., Lei, Y.: Buckling analysis of a plate with built-in rectangular delamination by strip distributed transfer function method. Acta Mech. 176(3), 231–243 (2005).  https://doi.org/10.1007/s00707-004-0206-y CrossRefzbMATHGoogle Scholar
  7. 7.
    Carreras, L., Renart, J., Turon, A., Costa, J., Essa, Y., Martin de la Escalera, F.: An efficient methodology for the experimental characterization of mode II delamination growth under fatigue loading. Int. J. Fatigue 95, 185–193 (2017).  https://doi.org/10.1016/j.ijfatigue.2016.10.017 CrossRefGoogle Scholar
  8. 8.
    Hammami, M., El Mahi, A., Karra, C., Haddar, M.: Experimental analysis of the linear and nonlinear behaviour of composites with delaminations. Appl. Acoust. 108, 31–39 (2016).  https://doi.org/10.1016/j.apacoust.2015.10.026 CrossRefGoogle Scholar
  9. 9.
    Gong, W., Chen, J., Patterson, E.A.: Buckling and delamination growth behaviour of delaminated composite panels subject to four-point bending. Compos. Struct. 138, 122–133 (2016).  https://doi.org/10.1016/j.compstruct.2015.11.054 CrossRefGoogle Scholar
  10. 10.
    Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under flexure. Acta Mech. 225(7), 2075 (2014).  https://doi.org/10.1007/s00707-013-1085-x MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mech. 224(12), 2955–2964 (2013).  https://doi.org/10.1007/s00707-013-0912-4 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barretta, R.: On Cesro–Volterra method in orthotropic Saint-Venant beam. J. Elast. 112(2), 233–253 (2013).  https://doi.org/10.1007/s10659-013-9432-7 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Xie, J., Waas, A.M., Rassaian, M.: Closed-form solutions for cohesive zone modeling of delamination toughness tests. Int. J. Solids Struct. 8889, 379–400 (2016).  https://doi.org/10.1016/j.ijsolstr.2015.12.025 CrossRefGoogle Scholar
  14. 14.
    Forschelen, P.J.J., Suiker, A.S.J., van der Sluis, O.: Effect of residual stress on the delamination response of film-substrate systems under bending. Int. J. Solids Struct. 9798, 284–299 (2016).  https://doi.org/10.1016/j.ijsolstr.2016.07.020 CrossRefGoogle Scholar
  15. 15.
    Benvenuti, E., Orlando, N., Ferretti, D., Tralli, A.: A new 3D experimentally consistent XFEM to simulate delamination in FRP-reinforced concrete. Compos. Part B Eng. 91, 346–360 (2016).  https://doi.org/10.1016/j.compositesb.2016.01.024 CrossRefGoogle Scholar
  16. 16.
    Saeedi, N., Sab, K., Caron, J.-F.: Cylindrical bending of multilayered plates with multi-delamination via a layerwise stress approach. Compos. Struct. 95, 728–739 (2013).  https://doi.org/10.1016/j.compstruct.2012.08.037 CrossRefGoogle Scholar
  17. 17.
    Ullah, H., Harland, A.R., Lucas, T., Price, D., Silberschmidt, V.V.: Finite-element modelling of bending of CFRP laminates: multiple delaminations. Comput. Mater. Sci. 52(1), 147–156 (2012).  https://doi.org/10.1016/j.commatsci.2011.02.005 CrossRefGoogle Scholar
  18. 18.
    Guenanou, A., Houmat, A.: Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method. Eng. Optim. (2017).  https://doi.org/10.1080/0305215X.2017.1347924
  19. 19.
    Chau-Dinh, T., Nguyen-Duy, Q., Nguyen-Xuan, H.: Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis. Acta Mech. 228(6), 2141–2163 (2017).  https://doi.org/10.1007/s00707-017-1818-3 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yazdani, S., Rust, W.J.H., Wriggers, P.: An XFEM approach for modelling delamination in composite laminates. Compos. Struct. 135, 353–364 (2016).  https://doi.org/10.1016/j.compstruct.2015.09.035 CrossRefGoogle Scholar
  21. 21.
    Nikrad, S.F., Keypoursangsari, S., Asadi, H., Akbarzadeh, A.H., Chen, Z.T.: Computational study on compressive instability of composite plates with off-center delaminations. Comput. Methods Appl. Mech. Eng. 310, 429–459 (2016).  https://doi.org/10.1016/j.cma.2016.07.021 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ovesy, H.R., Asghari Mooneghi, M., Kharazi, M.: Post-buckling analysis of delaminated composite laminates with multiple through-the-width delaminations using a novel layerwise theory. Thin Walled Struct. 94, 98–106 (2015).  https://doi.org/10.1016/j.tws.2015.03.028 CrossRefGoogle Scholar
  23. 23.
    Gupta, A.K., Patel, B.P., Nath, Y.: Nonlinear static analysis of composite laminated plates with evolving damage. Acta Mech. 224(6), 1285–1298 (2013).  https://doi.org/10.1007/s00707-013-0875-5 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Houmat, A.: Large amplitude free vibration of a shear deformable laminated composite parabolic plate with parabolically orthotropic plies. Acta Mech. 223(1), 145–160 (2012).  https://doi.org/10.1007/s00707-011-0550-7 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ovesy, H.R., Kharazi, M.: Compressional stability behavior of composite plates with through-the-width and embedded delaminations by using first order shear deformation theory. Comput. Struct. 89(1920), 1829–1839 (2011).  https://doi.org/10.1016/j.compstruc.2010.016 CrossRefGoogle Scholar
  26. 26.
    Kharazi, M., Ovesy, H.R., Taghizadeh, M.: Buckling of the composite laminates containing through-the-width delaminations using different plate theories. Compos. Struct. 92(5), 1176–1183 (2010).  https://doi.org/10.1016/j.compstruct.2009.10.019 CrossRefGoogle Scholar
  27. 27.
    Belalia, S., Houmat, A.: Non-linear free vibration of elliptic sector plates by a curved triangular p-element. Thin Walled Struct. 48(4), 316–326 (2010).  https://doi.org/10.1016/j.tws.2009.12.001 CrossRefzbMATHGoogle Scholar
  28. 28.
    Houmat, A.: Nonlinear free vibration of a shear deformable laminated composite annular elliptical plate. Acta Mech. 208(3), 281 (2009).  https://doi.org/10.1007/s00707-009-0148-5 CrossRefzbMATHGoogle Scholar
  29. 29.
    Nosier, A., Yavari, A., Sarkani, S.: A study of the edge-zone equation of Mindlin-Reissner plate theory in bending of laminated rectangular plates. Acta Mech. 146(3), 227–238 (2001).  https://doi.org/10.1007/BF01246734 CrossRefzbMATHGoogle Scholar
  30. 30.
    Chen, D., Dai, L.: Delamination growth of laminated circular plates under in-plane loads and movable boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3238–3249 (2013).  https://doi.org/10.1016/j.cnsns.2013.03.009 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Chen, D., Chen, C., Fu, Y., Dai, L.: Growth of delamination for laminates circular plates subjected to transverse loads. In: Luo, A., American Society of Mechanical Engineers (eds.) ASME 2009 International Mechanical Engineering Congress and Exposition 2009, pp. 597–605. American Society of Mechanical Engineers, New York.  https://doi.org/10.1115/IMECE2009-10687
  32. 32.
    Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)Google Scholar
  33. 33.
    Ali Faghidian, S.: Unified formulations of the shear coefficients in Timoshenko beam theory. J. Eng. Mech. 143(9), 06017013 (2017).  https://doi.org/10.1061/(ASCE)EM.1943-7889.0001297 CrossRefGoogle Scholar
  34. 34.
    Thai, C.H., Ferreira, A.J.M., Abdel Wahab, M., Nguyen-Xuan, H.: A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech. 227(5), 1225–1250 (2016).  https://doi.org/10.1007/s00707-015-1547-4 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhou, Y., Zhu, J.: Vibration and bending analysis of multiferroic rectangular plates using third-order shear deformation theory. Compos. Struct. 153, 712–723 (2016).  https://doi.org/10.1016/j.compstruct.2016.06.064 CrossRefGoogle Scholar
  36. 36.
    Saidi, A.R., Rasouli, A., Sahraee, S.: Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory. Compos. Struct. 89(1), 110–119 (2009).  https://doi.org/10.1016/j.compstruct.2008.07.003 CrossRefGoogle Scholar
  37. 37.
    Aghababaei, R., Reddy, J.N.: Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J. Sound Vib. 326(12), 277–289 (2009).  https://doi.org/10.1016/j.jsv.2009.04.044 CrossRefGoogle Scholar
  38. 38.
    Szekrnyes, A.: Stress and fracture analysis in delaminated orthotropic composite plates using third-order shear deformation theory. Appl. Math. Model. 38(1516), 3897–3916 (2014).  https://doi.org/10.1016/j.apm.2013.11.064 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Szekrnyes, A.: Semi-layerwise analysis of laminated plates with nonsingular delamination—the theorem of autocontinuity. Appl. Math. Model. 40(2), 1344–1371 (2016).  https://doi.org/10.1016/j.apm.2015.06.037 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Li, D.H.: Delamination and transverse crack growth prediction for laminated composite plates and shells. Comput. Struct. 177, 39–55 (2016).  https://doi.org/10.1016/j.compstruc.2016.07.011 CrossRefGoogle Scholar
  41. 41.
    Yamanaka, T., Heidari-Rarani, M., Lessard, L., Feret, V., Hubert, P.: A new finite element method for modeling delamination propagation without additional degrees of freedom. Compos. Struct. 147, 82–98 (2016).  https://doi.org/10.1016/j.compstruct.2016.03.040 CrossRefGoogle Scholar
  42. 42.
    Xie, D., Biggers, S.B.: Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: formulation and validation. Eng. Fract. Mech. 73(6), 771–785 (2006).  https://doi.org/10.1016/j.engfracmech.2005.07.013 CrossRefGoogle Scholar
  43. 43.
    Yao, L., Alderliesten, R.C., Zhao, M., Benedictus, R.: Discussion on the use of the strain energy release rate for fatigue delamination characterization. Compos. Part A Appl. Sci. Manuf. 66, 65–72 (2014).  https://doi.org/10.1016/j.compositesa.2014.06.018 CrossRefGoogle Scholar
  44. 44.
    Khan, R., Alderliesten, R., Benedictus, R.: Two-parameter model for delamination growth under mode I fatigue loading (part B: model development). Compos. Part A Appl. Sci. Manuf. 65, 201–210 (2014).  https://doi.org/10.1016/j.compositesa.2014.06.008 CrossRefGoogle Scholar
  45. 45.
    Wei, P.J., Chio, S.B., Liang, W.L., Lin, J.F.: Determining buckling strain energy release rate through indentation-induced delamination. Thin Solid Films 519(15), 4889–4893 (2011).  https://doi.org/10.1016/j.tsf.2011.01.048 CrossRefGoogle Scholar
  46. 46.
    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)zbMATHGoogle Scholar
  47. 47.
    Wang, J., Tong, L.: A study of the vibration of delaminated beams using a nonlinear anti-interpenetration constraint model. Compos. Struct. 57(1), 483–488 (2002).  https://doi.org/10.1016/S0263-8223(02)00117-4 CrossRefGoogle Scholar
  48. 48.
    Elsgolc, L.D.: Dover Publications. Dover Publications, New York (2007)Google Scholar
  49. 49.
    Maamar, D.B., Zenasni, R.: Effect of weaving type on damage behaviour of carbon/epoxy laminate under low velocity impact loading. Period. Polytech. Mech. Eng. 61(2), 140–145 (2017)CrossRefGoogle Scholar
  50. 50.
    Kuhtz, M., Hornig, A., Gude, M., Jger, H.: A method to control delaminations in composites for adjusted energy dissipation characteristics. Mater. Des. 123, 103–111 (2017).  https://doi.org/10.1016/j.matdes.2017.03.003 CrossRefGoogle Scholar
  51. 51.
    Kllner, A., Jungnickel, R., Vllmecke, C.: Delamination growth in buckled composite struts. Int. J. Fract. 202(2), 261–269 (2016).  https://doi.org/10.1007/s10704-016-0158-y CrossRefGoogle Scholar
  52. 52.
    Fuhui, Z., Yiming, F., Deliang, C.: Analysis of fatigue delamination growth for piezoelectric laminated cylindrical shell considering nonlinear contact effect. Int. J. Solids Struct. 45(20), 5381–5396 (2008).  https://doi.org/10.1016/j.ijsolstr.2008.05.031 CrossRefzbMATHGoogle Scholar
  53. 53.
    Anderson, T.L., Anderson, T.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2005)zbMATHGoogle Scholar
  54. 54.
    Beigzadeh, B., Rasaeifard, A.: Homotopy-based solution of Navier–Stokes equations for two-phase flow during magnetic drug targeting. J. Mol. Liquids 238, 11–18 (2017).  https://doi.org/10.1016/j.molliq.2017.04.106 CrossRefGoogle Scholar
  55. 55.
    Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017).  https://doi.org/10.1016/j.apm.2016.12.008 MathSciNetCrossRefGoogle Scholar
  56. 56.
    Jiang, C., Han, S., Ji, M., Han, X.: A new method to solve the structural reliability index based on homotopy analysis. Acta Mech. 226(4), 1067–1083 (2015).  https://doi.org/10.1007/s00707-014-1226-x MathSciNetCrossRefGoogle Scholar
  57. 57.
    Qian, L.H., Qian, Y.H., Chen, S.M.: Homotopy analysis method for homoclinic orbit of a buckled thin plate system. Acta Mech. 225(2), 373–381 (2014).  https://doi.org/10.1007/s00707-013-0965-4 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zhang, W., Qian, Y.H., Lai, S.K.: Extended homotopy analysis method for multi-degree-of-freedom non-autonomous nonlinear dynamical systems and its application. Acta Mech. 223(12), 2537–2548 (2012).  https://doi.org/10.1007/s00707-012-0725-x MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Kargarnovin, M., Faghidian, S., Farjami, Y., Farrahi, G.: Application of homotopy-Pad technique in limit analysis of circular plates under arbitrary rotational symmetric loading using von-Mises yield criterion. Commun. Nonlinear Sci. Numer. Simul. 15(4), 1080–1091 (2010).  https://doi.org/10.1016/j.cnsns.2009.05.030 MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Liao, S.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14(4), 983–997 (2009).  https://doi.org/10.1016/j.cnsns.2008.04.013 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Liao, S.: Advances in the Homotopy Analysis Method. World Scientific, Singapore (2013)Google Scholar
  62. 62.
    Motsa, S., Sibanda, P., Shateyi, S.: A new spectral-homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2293–2302 (2010).  https://doi.org/10.1016/j.cnsns.2009.09.019 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  64. 64.
    Motsa, S., Sibanda, P., Awad, F., Shateyi, S.: A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem. Comput. Fluids 39(7), 1219–1225 (2010).  https://doi.org/10.1016/j.compfluid.2010.03.004 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Lin, C.-H.: Design of a composite recurrent Laguerre orthogonal polynomial neural network control system with ameliorated particle swarm optimization for a continuously variable transmission system. Control Eng. Pract. 49, 42–59 (2016).  https://doi.org/10.1016/j.conengprac.2016.02.001 CrossRefGoogle Scholar
  66. 66.
    Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, New York (2002)Google Scholar
  67. 67.
    Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  68. 68.
    Fatemi, S., Ali, M.M., Sheikh, A.: Load distribution for composite steel concrete horizontally curved box girder bridge. J. Constr. Steel Res. 116, 19–28 (2016).  https://doi.org/10.1016/j.jcsr.2015.08.042 CrossRefGoogle Scholar
  69. 69.
    Liu, R.-H., Xu, J.-C., Zhai, S.-Z.: Large-deflection bending of symmetrically laminated rectilinearly orthotropic elliptical plates including transverse shear. Arch. Appl. Mech. 67(7), 507–520 (1997).  https://doi.org/10.1007/s004190050135 CrossRefzbMATHGoogle Scholar
  70. 70.
    Chien, W.-Z.: Large deflection of a circular clamped plate under uniform pressure. Acta Phys. Sin. 7 (2), 102–107 (1947).  https://doi.org/10.7498/aps.7.102. http://wulixb.iphy.ac.cn/EN/abstract/abstract71.shtml
  71. 71.
    Nosier, A., Yavari, A., Sarkani, S.: On a boundary layer phenomenon in Mindlin-Reissner plate theory for laminated circular sector plates. Acta Mech. 151(3–4), 149–161 (2001).  https://doi.org/10.1007/BF01246914 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations