Advertisement

Acta Mechanica

, Volume 229, Issue 4, pp 1567–1577 | Cite as

Collision dynamics of a single water droplet impinging on a high-temperature pool of oil

  • MingJun Xu
  • JiaQing Zhang
  • ChaoPeng Wu
  • ChangHai Li
  • Xiao Chen
  • ShouXiang Lu
Original Paper
  • 85 Downloads

Abstract

The article presents the dynamic process of a single water droplet impinging on a hot oil surface with various temperatures ranging from 205 to 260 \(^\circ \hbox {C}\). Distilled water is used to produce water droplets with different diameters. The impact behavior is recorded by using a high-speed digital camera with the speed of 2000 fps. The result shows that two typical phenomena, including crater–jet–bubble and vapor explosion, can be observed. The vapor explosion occurs when the oil temperature is higher than 210 \(^\circ \hbox {C}\). The oil temperature, the droplet size, and the Weber number are found to have significant influence on the vapor explosion time. The higher the oil pool temperature is, the earlier the vapor explosion occurs. Vapor explosion time increases with the droplet size, while decreases as the droplet Weber number increases. Moreover, the maximum heat absorption for a single water droplet immersing into the hot oil is calculated considering the changes of the droplet size. Both dimensionless maximum crater depth and maximum jet height increase with the pool temperature due to the surface tension, viscous force and decreasing density of the hot oil.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the Fundamental Research Funds for the Central Universities (No. WK2320000034), Class General Financial Grant from the China Postdoctoral Science Foundation (No. 2016M592068), the Fundamental Research Funds for the Central Universities (No. WK2320000037), and the Opening Fund of State Key Laboratory of Fire Science (No. HZ2017-KF06).

References

  1. 1.
    Ahrens, M.: Home Fires Involving Cooking Equipment. National Fire Protection Association, Quincy (2009)Google Scholar
  2. 2.
    Wijayasinghe, M.S., Makey, T.B.: Cooking oil: a home fire hazard in Alberta. Fire Technol. 33(2), 140–166 (1997)CrossRefGoogle Scholar
  3. 3.
    Manzello, S.L., Yang, J.C., Cleary, T.G.: On the interaction of a liquid droplet with a pool of hot cooling oil. Fire Saf. J. 38, 651–659 (2003)CrossRefGoogle Scholar
  4. 4.
    Edwards, N.: A new class of fire. Fire Prev. 310, 8–8 (1998)Google Scholar
  5. 5.
    Wang, X.S., Zhao, X.D., Zhang, Y., Cai, X., Gu, R., Xu, H.L.: Experimental study on the interaction of a water drop impacting on hot liquid surface. J. Fire Sci. 27, 545–559 (2009)CrossRefGoogle Scholar
  6. 6.
    Cong, B.H., Liao, G.X.: Experimental studies on water mist suppression of liquid fires with and without additives. J. Fire Sci. 27(2), 101–123 (2009)CrossRefGoogle Scholar
  7. 7.
    Cong, B.H., Liao, G., Huang, Z.: Extinguishment of liquid fuel fires by water mist with additives. Fire Saf. Sci. 7, 95–95 (2007). (In Chinese)Google Scholar
  8. 8.
    Liu, Z., Kim, A.K.: A review of water mist fire suppression technology: part II—application studies. J. Fire. Prot. Eng. 11(1), 16–42 (2001)CrossRefGoogle Scholar
  9. 9.
    Qin, J., Yao, B., Chow, W.K.: Experimental study of suppressing cooking oil fire with water mist using a cone calorimeter. Int. J. Hosp. Manag. 23(5), 545–556 (2004)CrossRefGoogle Scholar
  10. 10.
    Grant, G., Brenton, J., Drysdale, D.: Fire suppression by water sprays. Prog. Energy Combust. Sci. 26, 79–130 (2000)CrossRefGoogle Scholar
  11. 11.
    Liang, G., et al.: Rebound and spreading during a drop impact on wetted cylinders. Exp. Therm. Fluid Sci. 52, 97–103 (2014)CrossRefGoogle Scholar
  12. 12.
    Liang, G., et al.: Experimental investigation of a drop impacting on wetted spheres. Exp. Therm. Fluid Sci. 55, 150–157 (2014)CrossRefGoogle Scholar
  13. 13.
    Liang, G., Mu, X., Guo, Y., et al.: Contact vaporization of an impacting drop on heated surfaces. Exp. Therm. Fluid Sci. 74, 73–80 (2016)CrossRefGoogle Scholar
  14. 14.
    Liang, G., Mu, X., Guo, Y., et al.: Flow and heat transfer during a single drop impact on a liquid film. Numer. Heat Transf. Part B Fundam. 69(6), 575–582 (2016)CrossRefGoogle Scholar
  15. 15.
    Liang, G., Mudawar, I.: Review of drop impact on heated walls. Int. J. Heat Mass Transf. 106, 103–126 (2017)CrossRefGoogle Scholar
  16. 16.
    Zou, J., Ren, Y.L., Ji, C., Ruan, X.D., Fu, X.: Phenomena of a drop impact on a restricted liquid surface. Exp. Therm. Fluid Sci. 51, 332–341 (2013)CrossRefGoogle Scholar
  17. 17.
    Zou, J., Wang, P.F., Zhang, T.R., Fu, X., Ruan, X.: Experimental study of a drop bouncing on a liquid surface. Phys. Fluids 23(4), 044101 (2011)CrossRefGoogle Scholar
  18. 18.
    Gao, X., Li, R.: Spread and recoiling of liquid droplets impacting solid surfaces. AIChE J. 60(7), 2683–2691 (2014)CrossRefGoogle Scholar
  19. 19.
    Gao, X., Li, R.: Impact of a single drop on a flowing liquid film. Phys. Rev. E 92(5), 053005 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gao, X., Kong, L., Li, R., et al.: Heat transfer of single drop impact on a film flow cooling a hot surface. Int. J. Heat Mass Transf. 108, 1068–1077 (2017)CrossRefGoogle Scholar
  21. 21.
    Lan, M.J., Wang, X.S., Zhu, P., Chen, P.P.: Experimental study on the dynamic process of a water drop with additives impact upon hot liquid fuel surfaces. Energy Proc. 66, 173–176 (2015)CrossRefGoogle Scholar
  22. 22.
    Wang, Z., et al.: Experimental study on the vapor explosion process of a water drop impact upon hot molten ghee surface. J. Loss Prev. Process. Ind. (2017).  https://doi.org/10.1016/j.jlp.2017.03.013
  23. 23.
    Xu, M.J., Wang, C.J., Lu, S.X.: Experimental study of a droplet impacting on a burning fuel liquid surface. Exp. Therm. Fluid Sci. 74, 347–353 (2016)CrossRefGoogle Scholar
  24. 24.
    Xu, M.J., Wang, C.J., Lu, S.X.: Water droplet impacting on burning or unburned liquid pool. Exp. Therm. Fluid Sci. 85, 313–321 (2017)CrossRefGoogle Scholar
  25. 25.
    Liang, G., et al.: Crown behavior and bubble entrainment during a drop impact on a liquid film. Theoret. Comput. Fluid Dyn. 28(2), 159–170 (2013)CrossRefGoogle Scholar
  26. 26.
    Cai, Y.K.: Phenomena of a liquid drop falling to a liquid surface. Exp. Fluids 7, 388–394 (1989)CrossRefGoogle Scholar
  27. 27.
    Liang, G., Mudawar, I.: Review of mass and momentum interactions during drop impact on a liquid film. Int. J. Heat Mass Transf. 101, 577–599 (2016)CrossRefGoogle Scholar
  28. 28.
    Zou, J., Ji, C., Yuan, B.G., Ren, Y.L., Ruan, X.D., Fu, X.: Large bubble entrapment during drop impacts on a restricted liquid surface. Phys. Fluids 24, 057101 (2012)CrossRefGoogle Scholar
  29. 29.
    Rein, M.: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 61–93 (1993)CrossRefGoogle Scholar
  30. 30.
    Thoraval, M.J., Li, Y., Thoroddsen, S.T.: Vortex-ring-induced large bubble entrainment during drop impact. Phys. Rev. E 93(3), 033128 (2016)CrossRefGoogle Scholar
  31. 31.
    Thoraval, M.J., Takehara, K., Etoh, T.G., et al.: von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108(26), 264506 (2012)CrossRefGoogle Scholar
  32. 32.
    Thoraval, M.J., Takehara, K., Etoh, T.G., Thoroddsen, S.T.: Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234–258 (2013)CrossRefzbMATHGoogle Scholar
  33. 33.
    Avedisian, C.T.: The homogeneous nucleation limits of liquids. J. Phys. Chem. Ref. Data 14(3), 695–729 (1985)CrossRefGoogle Scholar
  34. 34.
    Chen, P.P., Wang, X.S., Zhang, Y.: Dynamic process of a water drop impacting onto hot ghee surface. J. Saf. Environ. 11(6), 213–218 (2011). (In Chinese)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • MingJun Xu
    • 1
  • JiaQing Zhang
    • 2
  • ChaoPeng Wu
    • 1
  • ChangHai Li
    • 1
  • Xiao Chen
    • 1
  • ShouXiang Lu
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.State Grid Anhui Electric Power Research InstituteHefeiChina

Personalised recommendations