Acta Mechanica

, Volume 229, Issue 4, pp 1503–1516 | Cite as

Functionally graded piezoelectric–piezomagnetic fibrous composites

  • Hsin-Yi Kuo
  • Kai-Chi Hsin
Original Paper


We investigate the magnetoelectric effect and potential fields of functionally graded multiferroic fibrous composites under anti-plane shear deformation coupled to in-plane electric and magnetic fields. The cylinders are exponentially graded along the radial direction. Rayleigh’s formalism and composite cylinder assemblage model are generalized to account for the configuration. We find that the grading parameter has a dramatic effect on the potential field of the inclusion and the effective property of the composite. We adopt this approach to numerically study the exponentially graded \(\hbox {BaTiO}_{3}\hbox {--CoFe}_{2}\hbox {O}_{4}\) composite and provide insights into developing new multiferroic fibrous media with high magnetoelectric coupling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arefi, M.: Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials. Acta Mech. 227, 2529–2542 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Academic Press, San Diago (2001)zbMATHGoogle Scholar
  3. 3.
    Bhangale, R.K., Ganesan, N.: Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct. 43, 3230–3253 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51, 16424–16427 (1995)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Kuo, H.-Y.: Transport properties of composites consisting of periodic arrays of exponentially graded cylinders with cylindrically orthotropic materials. J. Appl. Phys. 98, 033716 (2005)CrossRefGoogle Scholar
  6. 6.
    Feng, W.J., Pan, E.: Dynamic fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-elastic plates. Eng. Fract. Mech. 75, 1468–1487 (2008)Google Scholar
  7. 7.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005)CrossRefGoogle Scholar
  8. 8.
    Han, X., Liu, G.R.: Elastic waves in a functionally graded piezoelectric cylinder. Smart Mater. Struct. 12, 962–971 (2003)CrossRefGoogle Scholar
  9. 9.
    Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)CrossRefGoogle Scholar
  10. 10.
    Huang, J.H., Kuo, W.-S.: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81, 1378–1386 (1997)CrossRefGoogle Scholar
  11. 11.
    Kuo, H.-Y.: Electrostatic interactions of arbitrarily dispersed multicoated elliptic cylinders. Int. J. Eng. Sci. 48, 370–382 (2010)CrossRefGoogle Scholar
  12. 12.
    Kuo, H.-Y.: Multicoated elliptical fibrous composites of piezoelectric and piezomagnetic phases. Int. J. Eng. Sci. 49, 561–575 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kuo, H.-Y., Bhattacharya, K.: Fibrous composites of piezoelectric and piezomagnetic phases. Mech. Mater. 60, 159–170 (2013)CrossRefGoogle Scholar
  14. 14.
    Kuo, H.-Y., Chen, T.: Effective transport properties of arrays of multicoated or graded spheres with spherically transversely isotropic constituents. J. Appl. Phys. 99, 093702 (2006)CrossRefGoogle Scholar
  15. 15.
    Kuo, H.-Y., Chen, T.: Electrostatic fields of an infinite medium containing arbitrarily positioned coated cylinders. Int. J. Eng. Sci. 46, 1157–1172 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kuo, H.-Y., Pan, E.: Effective magnetoelectric effect in multicoated circular fibrous multiferroic composites. J. Appl. Phys. 109, 104901 (2011)CrossRefGoogle Scholar
  17. 17.
    Kuo, H.-Y., Wang, Y.-L.: Optimization of magnetoelectricity in multiferroic fibrous composites. Mech. Mater. 50, 88–99 (2012)CrossRefGoogle Scholar
  18. 18.
    Lazar, M.: On the screw dislocation in a functionally graded material. Mech. Res. Commun. 34, 305–311 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, P., Wen, Y., Liu, P., Li, X., Jia, C.: A magnetoelectric energy harvester and management circuit for wireless sensor network. Sens. Actuators, A 157, 100–106.41 (2010)CrossRefGoogle Scholar
  20. 20.
    Liu, L., Kuo, H.-Y.: Closed-form solutions to the effective properties of fibrous magnetoelectric composites and their applications. Int. J. Solids Struct. 49, 3055–3062 (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, G., Nan, C.-W., Cai, N., Lin, Y.: Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminate composites of rare-earth-iron alloys and lead-zirconate-titanate. J. Appl. Phys. 95, 2660–2664 (2004)CrossRefGoogle Scholar
  22. 22.
    Liu, Y.X., Wang, J.G., Nan, C.W.: Numerical modeling of magnetoelectric effect in a composite structure. J. Appl. Phys. 94, 5111–5117 (2003)CrossRefGoogle Scholar
  23. 23.
    Liu, Q., Zhao, M., Zhang, C.: Antiplane scattering of SH waves by a circular cavity in an exponentially graded half space. Int. J. Eng. Sci. 78, 61–72 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lutz, M.P., Zimmerman, R.W.: Effect of the interphase zone on the conductivity or diffusivity of particulate composite using Maxwell’s homogenization method. Int. J. Eng. Sci. 98, 51–59 (2016)CrossRefGoogle Scholar
  25. 25.
    Ma, J., Ke, L.-L., Wang, Y.-S.: Sliding frictional contact of functionally graded magneto-electro-elastic materials under a conducting flat punch. Trans. ASME J. Appl. Mech. 82, 011009 (2015)CrossRefGoogle Scholar
  26. 26.
    Ma, L., Wu, L.-Z., Feng, L.-P.: Surface crack problem for functionally graded magnetoelectroelastic coating-homogeneous elastic substrate system under anti-plane mechanical and in-plane electric and magnetic loading. Eng. Fract. Mech. 76, 269–285 (2009)CrossRefGoogle Scholar
  27. 27.
    Markworth, A.J., Ramesh, K.S., Parks Jr., W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30, 2183–2193 (1995)CrossRefGoogle Scholar
  28. 28.
    Martin, P.A.: On functionally graded balls and cones. J. Eng. Math. 42, 133–142 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Martin, P.A.: Scattering by a cavity in an exponentially graded half-space. Trans. ASME J. Appl. Mech. 76, 031009 (2009)CrossRefGoogle Scholar
  30. 30.
    Mousavi, S.M.: Dislocation-based fracture analysis of functionally graded magnetoelectroelastic solids. Z. Angew. Math. Mech. 95, 1501–1513 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mousavi, S.M., Paavola, J.: Analysis of functionally graded magneto-electro-elastic layer with multiple cracks. Theor. Appl. Fract. Mech. 66, 1–8 (2013)CrossRefGoogle Scholar
  32. 32.
    Nan, C.-W., Li, M., Huang, J.H.: Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys. Rew. B 63, 144415 (2001)CrossRefGoogle Scholar
  33. 33.
    Palneedi, H., Annapureddy, V., Priya, S., Ryu, J.: Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5, 9 (2016)CrossRefGoogle Scholar
  34. 34.
    Shodja, H.M., Eskandari, S., Eskandari, M.: Shear horizontal surface acoustic waves in functionally graded magneto-electro-elastic half-space. J. Eng. Math. 97, 83–100 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sladek, J., Sladek, V., Krahulec, S., Pan, E.: Enhancement of the magnetoelectric coefficient in functionally graded multiferroic composites. J. Intell. Mater. Syst. Struct. 23, 1649–1658 (2012)CrossRefGoogle Scholar
  36. 36.
    Sladek, J., Sladek, V., Krahulec, S., Pan, E.: Analyses of functionally graded plates with magnetoelectroelastic layer. Smart Mater. Struct. 22, 035003 (2013)CrossRefzbMATHGoogle Scholar
  37. 37.
    Suresh, S.: Graded materials for resistance to contact deformation and damage. Science 292, 2447–2451 (2001)CrossRefGoogle Scholar
  38. 38.
    Wang, Y.-Z., Kuna, M.: Screw dislocation in functionally graded magnetoelectroelastic solids. Philos. Mag. Lett. 94, 72–79 (2014)CrossRefGoogle Scholar
  39. 39.
    Wang, X., Pan, E.: Magnetoelectric effects in multiferroic fibrous composite with imperfect interface. Phys. Rev. B 76, 214107 (2007)CrossRefGoogle Scholar
  40. 40.
    Wang, R., Pan, E.: Three-dimensional modeling of functionally graded multiferroic composites. Mech. Adv. Mater. Struct. 18, 68–76 (2011)CrossRefGoogle Scholar
  41. 41.
    Wang, X., Pan, E., Albrecht, J.D., Feng, W.J.: Effective properties of multilayered functionally graded multiferroic composites. Compos. Struct. 87, 206–214 (2009)CrossRefGoogle Scholar
  42. 42.
    Wu, C.-P., Tsai, Y.-H.: Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales. Europ. J. Mech. A Solids 29, 166–181 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Xue, C.X., Pan, E.: On the longitudinal wave along a functionally graded magneto-electro-elastic rod. Int. J. Eng. Sci. 62, 48–55 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations