Advertisement

Acta Mechanica

, Volume 229, Issue 4, pp 1741–1757 | Cite as

The limit velocity and limit displacement of nanotwin-strengthened metals under ballistic impact

  • Q. D. Ouyang
  • A. K. Soh
  • G. J. Weng
  • L. L. Zhu
  • X. Guo
Original Paper

Abstract

A new category of structural metals with high strength and good ductility is coarse-grained metals strengthened by nanotwinned (NT) regions. This unique combination makes them particularly suitable for applications in bulletproof targets. The extent of this improvement, however, depends on the volume fraction of the NT regions and multiple other microstructural features. Here, a numerical model based on the strain gradient plasticity and the Johnson–Cook failure criterion is developed to study the effects of these attributes. The ballistic performance is quantified by two indices: the limit velocity that measures its ability to resist failure and the limit displacement that measures its ability to resist deformation. The results obtained indicate that, in general, a relatively small twin spacing and a moderate volume fraction of NT regions can achieve both excellent limit velocity and limit displacement. Moreover, array-arranged NT regions are more effective than staggered NT regions in enhancing the limit velocity, but the influence of the array group tends to depend more on the volume fraction of NT regions than the latter one. Mechanism analyses based on the three stages of the impact process and two categories of low-speed impact are performed. The simulated results could provide significant insights into the NT structures for a superior class of nanotwin-strengthened metals for ballistic protection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nobili, A., Radi, E., Lanzoni, L.: On the effect of the backup plate stiffness on the brittle failure of a ceramic armor. Acta Mech. 227, 159–172 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buchely, M.F., Maranon, A.: An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material. Acta Mech. 226, 2999–3010 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kumar, S., Gupta, D.S., Singh, I., Sharma, A.: Behavior of Kevlar/epoxy composite plates under ballistic impact. J. Reinf. Plast. Compos. 29, 2048–2064 (2010)CrossRefGoogle Scholar
  4. 4.
    Sun, L.Y., Gibson, R.F., Gordaninejad, F., Suhr, J.: Energy absorption capability of nanocomposites: A review. Compos. Sci. Technol. 69, 2392–3409 (2009)Google Scholar
  5. 5.
    Erkendirci, O.F., Haque, B.Z.: Quasi-static penetration resistance behavior of glass fiber reinforced thermoplastic composites. Compos. Part B Eng. 43, 3391–3405 (2012)CrossRefGoogle Scholar
  6. 6.
    Jin, L.M., Hu, H., Sun, B.Z., Gu, B.H.: A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation. Compos. Part B Eng. 41, 337–353 (2010)CrossRefGoogle Scholar
  7. 7.
    Shokrieh, M.M., Javadpour, G.H.: Penetration analysis of a projectile in ceramic composite armor. Compos. Struct. 82, 269–276 (2008)CrossRefGoogle Scholar
  8. 8.
    Tan, P.: Numerical simulation of the ballistic protection performance of a laminated armor system with pre-existing debonding/delamination. Compos. Part B Eng. 59, 50–59 (2014)CrossRefGoogle Scholar
  9. 9.
    Jena, P.K., Ramanjeneyulu, K., Kumar, K.S., Bhat, T.B.: Ballistic studies on layered structures. Mater. Des. 30, 1922–1929 (2009)CrossRefGoogle Scholar
  10. 10.
    Ubeyli, M., Deniz, H., Demir, T., Ogel, B., Gurel, B., Keles, O.: Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers. Mater. Des. 32, 1565–1570 (2011)CrossRefGoogle Scholar
  11. 11.
    Guo, X., Sun, X., Tian, X., Weng, G.J., Ouyang, Q.D., Zhu, L.L.: Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic. Compos. Struct. 157, 163–173 (2016)CrossRefGoogle Scholar
  12. 12.
    Yuan, C., Qin, Q., Wang, T.J.: Simplified analysis of large deflection response of a metal sandwich beam subjected to impulsive loading. Acta Mech. 226, 3639–3651 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ma, E.: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49–53 (2006)CrossRefGoogle Scholar
  14. 14.
    Lu, L., Chen, X., Huang, X., Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009)CrossRefGoogle Scholar
  15. 15.
    Lu, K., Lu, L., Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)CrossRefGoogle Scholar
  16. 16.
    Chen, A.Y., Liu, J.B., Wang, H.T., Lu, J., Wang, Y.M.: Gradient twinned 304 stainless steels for high strength and high ductility. Mater. Sci. Eng. A 667, 179–188 (2016)CrossRefGoogle Scholar
  17. 17.
    Dao, M., Lu, L., Asaro, R., Hosson, J.D., Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041–4065 (2007)CrossRefGoogle Scholar
  18. 18.
    Sennour, M., Korinek, S.L., Champion, Y., Hytch, M.J.: HRTEM study of defects in twin boundaries of ultra-fine grained copper. Philos. Mag. 87, 1465–1486 (2007)CrossRefGoogle Scholar
  19. 19.
    Qin, E.W., Lu, L., Tao, N.R., Tan, J., Lu, K.: Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Mater. 57, 6215–6225 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, G., Jiang, Z., Lian, J.: Enhanced tensile ductility in an electrodeposited Cu with nano-sized growth twins. Int. J. Mod. Phys. B 24, 2537–2542 (2010)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Tao, N.R., Lu, K.: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater. 56, 2429–2440 (2008)CrossRefGoogle Scholar
  22. 22.
    Li, Y.S., Zhang, Y., Tao, N.R., Lu, K.: Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scr. Mater. 59, 475–478 (2008)CrossRefGoogle Scholar
  23. 23.
    Xiao, G.H., Tao, N.R., Lu, K.: Strength–ductility combination of nanostructured Cu–Zn alloy with nanotwin bundles. Scr. Mater. 65, 119–122 (2011)CrossRefGoogle Scholar
  24. 24.
    Lu, K., Yan, F.K., Wang, H.T., Tao, N.R.: Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878–883 (2012)CrossRefGoogle Scholar
  25. 25.
    Yan, F.K., Liu, G.Z., Tao, N.R., Lu, K.: Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 60, 1059–1071 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, H.T., Tao, N.R., Lu, K.: Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Mater. 60, 4027–4040 (2012)CrossRefGoogle Scholar
  27. 27.
    Liu, G.Z., Tao, N.R., Lu, K.: 316L Austenite stainless steels strengthened by means of nano-scale twins. J. Mater. Sci. Technol. 26, 289–292 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhang, Z.B., Mishin, O.V., Tao, N.R., Pantleon, W.: Microstructure and annealing behavior of a modified 9Cr–1Mo steel after dynamic plastic deformation to different strains. J. Nucl. Mater. 458, 64–69 (2015)CrossRefGoogle Scholar
  29. 29.
    Yi, H.Y., Yan, F.K., Tao, N.R., Lu, K.: Comparison of strength–ductility combinations between nanotwinned austenite and martensite–austenite stainless steels. Mater. Sci. Eng. A 647, 152–156 (2015)CrossRefGoogle Scholar
  30. 30.
    Frontan, J., Zhang, Y., Dao, M., Lu, J., Galvez, F., Jerusalem, A.: Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel. Acta Mater. 60, 1353–1367 (2012)CrossRefGoogle Scholar
  31. 31.
    Yang, G., Guo, X., Weng, G.J., Zhu, L.L., Ji, R.: Simulation of ballistic performance of coarse-grained metals strengthened by nanotwinned regions. Model. Simul. Mater. Sci. Eng. 23, 085009 (2015)CrossRefGoogle Scholar
  32. 32.
    Guo, X., Ji, R., Weng, G.J., Zhu, L.L., Lu, J.: Computer simulation of strength and ductility of nanotwin-strengthened coarse-grained metals. Model. Simul. Mater. Sci. Eng. 22, 075014 (2014)CrossRefGoogle Scholar
  33. 33.
    Guo, X., Ouyang, Q.D., Weng, G.J., Zhu, L.L.: The direct and indirect effects of nanotwin volume fraction on the strength and ductility of coarse-grained metals. Mater. Sci. Eng. A 657, 234–243 (2016)CrossRefGoogle Scholar
  34. 34.
    ABAQUS/Explicit, ABAQUS Theory Manual and User’s Manual, version 6.10. Dassault, Providence, RI (2013)Google Scholar
  35. 35.
    Li, J.J., Soh, A.K.: Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plast. 39, 88–102 (2012)CrossRefGoogle Scholar
  36. 36.
    Liu, J.X., Soh, A.K.: Strain gradient elasto-plasticity with a new Taylor-based yield function. Acta Mech. 227, 3031–3048 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhu, L.L., Ruan, H.H., Li, X.Y., Dao, M., Gao, H.J., Lu, J.: Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater. 59, 5544–5557 (2011)CrossRefGoogle Scholar
  38. 38.
    Xie, Q.J., Zhu, Z.W., Kang, G.Z.: Dislocation-dynamics-based dynamic constitutive model of magnesium alloy. Acta Mech. 228, 1415–1422 (2017)CrossRefGoogle Scholar
  39. 39.
    Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands (1983)Google Scholar
  40. 40.
    Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)CrossRefGoogle Scholar
  41. 41.
    Dabboussi, W., Nemes, J.A.: Modeling of ductile fracture using the dynamic punch test. Int. J. Mech. Sci. 47, 1282–1299 (2005)CrossRefGoogle Scholar
  42. 42.
    Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H.J.: A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20, 753–782 (2004)CrossRefzbMATHGoogle Scholar
  44. 44.
    Kocks, U.F., Mecking, H.: Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003)CrossRefGoogle Scholar
  45. 45.
    Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169–2179 (2005)CrossRefGoogle Scholar
  46. 46.
    Zhang, X., Wang, H., Chen, X.H., Lu, L., Lu, K., Hoagland, R.G., Misra, A.: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006)CrossRefGoogle Scholar
  47. 47.
    Tadmor, E.B., Bernstein, N.: A first-principles measure for the twinnability of FCC metals. J. Mech. Phys. Solids 52, 2507–2519 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Q. D. Ouyang
    • 1
    • 2
  • A. K. Soh
    • 3
  • G. J. Weng
    • 4
  • L. L. Zhu
    • 5
  • X. Guo
    • 1
    • 2
    • 6
  1. 1.School of Mechanical EngineeringTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Nonlinear Dynamics and ControlTianjinChina
  3. 3.School of EngineeringMonash University MalaysiaBandar SunwayMalaysia
  4. 4.Department of Mechanical and Aerospace EngineeringRutgers UniversityNew BrunswickUSA
  5. 5.Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang UniversityHangzhouChina
  6. 6.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina

Personalised recommendations