Acta Mechanica

, Volume 229, Issue 4, pp 1869–1892 | Cite as

Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer

  • Pramod Kumar Yadav
  • Ashish Tiwari
  • Priyanka Singh
Original Paper
  • 25 Downloads

Abstract

This paper concerns the motion of a viscous steady incompressible fluid through a membrane, where the membrane is built up by impermeable spheroidal particles covered by a porous layer. In this work, we discuss the hydrodynamic permeability of a membrane built up by spheroidal particles. Cell model technique has been used to find the hydrodynamic permeability of the membrane. The emphasis is placed on the hydrodynamic permeability of the membrane and its controlling parameters like the permeability of the porous medium, particle volume fraction, deformation parameters, stress jump coefficient. The dependency of the hydrodynamic permeability of the membrane on the above controlling parameters is discussed graphically. Some previous results for hydrodynamic permeability and drag force are verified.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The first author is thankful to SERB, New Delhi, for supporting this research work under the research grant SR/ FTP/ MS-47/ 2012.

Compliance with Ethical Standards:

Funding:

This study is funded by Science and Engineering Research Board, Government of India. (SR/FTP/MS-47/2012).

Conflict of Interest:

Dr. Pramod Kumar Yadav has received a research grant from Science and Engineering Research Board, Govt. of India. Dr. Ashish Tiwari and Ms. Priyanka Singh declare that they have no conflict of interest.

References

  1. 1.
    Darcy, H.P.G.: Les fontaines publiques de la ville de Dijon Paris: Victor Dalmont (1856)Google Scholar
  2. 2.
    Brinkman, H.C.: A calculation of viscous force exerted by a flowing fluid on a dense swarm of particles. J. Appl. Sci. Res. A1, 27–36 (1947)MATHGoogle Scholar
  3. 3.
    Stokes, G.G.: On the effects of internal friction of fluids on pendulums. J. Trans. Cambr. Philos. Soc. 9, 8–106 (1851)Google Scholar
  4. 4.
    Veerapaneni, S., Wiesner, M.R.: Hydrodynamics of fractal aggregates with radially varying permeability. J Colloid Interface Sci. 177(1), 45–57 (1996)CrossRefGoogle Scholar
  5. 5.
    Uchida, S.: Viscous flow in multiparticle systems: slow viscous flow through a mass of particles. Int. Sci. Technol. Univ. Tokyo 3, 97 (1949). (in Japanese) (Abstract, Ind. Engng. Chem. 46, 1194–1195 (translated by T. Motai) (1954))Google Scholar
  6. 6.
    Happel, J.: Viscous flow in multiparticle system: slow motion of fluids relative to beds of spherical particles. A. I. Ch. E. 4(2), 197–201 (1958)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Happel, J.: Viscous flow relative to arrays of cylinders. A. I. Ch. E. 5(2), 174–177 (1959)CrossRefGoogle Scholar
  8. 8.
    Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds number. J. Phys. Soc. Jpn. 14, 527–532 (1959)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mehta, G.D., Morse, T.F.: Flow through charged membranes. J. Chem. Phys. 63(5), 1878–1889 (1975)CrossRefGoogle Scholar
  10. 10.
    Cunningham, E.: On the steady state fall of spherical particles through fluid medium. Proc. R. Soc. Lond. A 83, 357–365 (1910)CrossRefMATHGoogle Scholar
  11. 11.
    Kvashnin, A.G.: Cell model of suspension of spherical particles. Fluid Dyn. 14, 598–602 (1979)CrossRefMATHGoogle Scholar
  12. 12.
    Yadav, P.K., Tiwari, A., Deo, S., Filippov, A.N., Vasin, S.: Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech. 215, 193–209 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Deo, S., Filippov, A.N., Tiwari, A., Vasin, S.I., Starov, V.: Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Adv. Coll. Interface Sci. 164(1), 21–37 (2011)CrossRefGoogle Scholar
  14. 14.
    Happel, J., Brenner, H.: Low Reynolds Number hydrodynamics. Martinus Nijoff Publishers, The Hague (1983)MATHGoogle Scholar
  15. 15.
    Oberbeck, A., Stationare, U.: Fliissigkeitsbewegungen mit Berucksichtigung der inneren Reibung. J. Reine Angew. Math. 81, 62–80 (1876)MathSciNetGoogle Scholar
  16. 16.
    Sampson, R.A.: On Stoke’s current function. Philos. Trans. R. Soc. Lond. Ser. A 182, 449–518 (1891)CrossRefMATHGoogle Scholar
  17. 17.
    Payne, L.E., Pell, W.H.: The Stokes flow problem for a class of axially symmetric bodies. J. Fluid. Mech. 7, 529–549 (1960)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Acrivos, A., Taylor, T.D.: The Stokes flow past an arbitrary particle: the slightly deformed sphere. Chem. Eng. Sci. 19, 445–451 (1964)CrossRefGoogle Scholar
  19. 19.
    Epstein, N., Masliyah, J.H.: Creeping flow through clusters of spheroids and elliptical cylinders. Chem. Eng. J. 3, 169–175 (1972)CrossRefGoogle Scholar
  20. 20.
    Ramkissoon, H.: Stokes flow past a slightly deformed fluid sphere. Z.A.M.P 37, 859–866 (1986)CrossRefMATHGoogle Scholar
  21. 21.
    Palaniappan, D.: Creeping flow about a slightly deformed sphere. Z. Angew. Math. Phys. 45, 832–838 (1994)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dassios, G., Hadjinicolaou, M., Payatakes, A.C.: Generalized Eigen function and complete semi separable solutions for Stokes flow in spheroidal coordinates. Q. Appl. Math. 52, 157–191 (1994)CrossRefMATHGoogle Scholar
  23. 23.
    Dassios, G., Hadjinicolaou, M., Coutelieris, F.A., Payatakes, A.C.: Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int. J. Eng. Sci. 33(10), 1465–1490 (1995)CrossRefMATHGoogle Scholar
  24. 24.
    Burganos, V.N., Coutelieris, F.A., Dassios, G., Payatakes, A.C.: On the rapid convergence of the analytical solution of Stokes flow around spheroids-in-cell. Chem. Eng. Sci. 50(20), 3313–3317 (1995)CrossRefGoogle Scholar
  25. 25.
    Ramkissoon, H.: Slip flow past an approximate spheroid. Acta Mech. 123, 227–233 (1997)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zlatanovski, T.: Axi-symmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. Q. J. Mech. Appl. Math. 52(1), 111–126 (1999)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Datta, S., Deo, S.: Stokes flow with slip and Kuwabara boundary conditions. Proc. Indian Acad. Sci. (Math. Sci.) 112(3), 463–475 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Srinivasacharya, D.: Creeping flow past a porous approximate sphere. Z. Angew Math. Mech. 83(7), 1–6 (2003)CrossRefMATHGoogle Scholar
  29. 29.
    Deo, S.: Stokes flow past a swarm of deformed porous spheroidal particles with Happel boundary condition. J. Porous Media 12(4), 347–359 (2009)CrossRefGoogle Scholar
  30. 30.
    Deo, S., Gupta, B.: Drag on a porous sphere embedded in another porous medium. J. Porous Media 13(11), 1009–1016 (2010)CrossRefGoogle Scholar
  31. 31.
    Yadav, P.K., Deo, S.: Stokes flow past a porous spheroid embedded in another porous medium. Meccanica 47, 1499–1516 (2012)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Yadav, P.K., Deo, S., Yadav, M.K., Filippov, A.N.: On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles. Colloid J. 75(5), 611–622 (2013)CrossRefGoogle Scholar
  33. 33.
    Langlois, W.E.: Slow Viscous Flow. Macmillan, New York (1964)Google Scholar
  34. 34.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1970)MATHGoogle Scholar
  35. 35.
    Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a heterogeneous fluid-I, theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995a)CrossRefMATHGoogle Scholar
  36. 36.
    Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a heterogeneous fluid-II, theoretical development. Int. J. Heat Mass Transf. 38, 2647–2655 (1995b)CrossRefMATHGoogle Scholar
  37. 37.
    Vasin, S.I., Filippov, A.N.: Permeability of complex porous media. Colloid J. 71(1), 31–45 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Pramod Kumar Yadav
    • 1
  • Ashish Tiwari
    • 2
  • Priyanka Singh
    • 3
  1. 1.Department of MathematicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.Department of MathematicsBirla Institute of Technology and SciencePilaniIndia
  3. 3.Department of MathematicsNational Institute of Technology PatnaPatnaIndia

Personalised recommendations