Skip to main content
Log in

Stress field of a functionally graded coated inclusion of arbitrary shape

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the theory of complex variable functions, the stress field in an infinite matrix containing an arbitrary shape inclusion with a functionally graded coating is analyzed. The elastic properties in the functionally graded coating change continuously and arbitrarily along the normal direction of the inclusion. By using the method of piecewise homogeneous layers and the technique of conformal mapping, the complex potential functions in the matrix, coating and inclusion are derived in the form of Laurent series and Faber series, respectively. The influences of different varying Young’s modulus on the interfacial stresses are discussed by numerical examples for various shape inclusions, including ellipse, triangle, square and rectangle. It is shown that the magnitude and distribution of interfacial stresses for arbitrary shape inclusions can be successfully designed and controlled by adding a functionally graded coating with proper varying elastic properties along the normal direction. The results for some special cases are compared with previous literature and found in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Q., Gao, C.F.: Non-axisymmetric thermal stress of a functionally graded coated circular inclusion in an infinite matrix. Mech. Res. Commun. 50, 27–32 (2013)

    Article  Google Scholar 

  2. Yang, Q., Gao, C.F.: Thermal stresses around a circular inclusion with functionally graded interphase in a finite matrix. Sci. China Phys. Mech. Astron. 57(10), 1927–1933 (2014)

    Article  Google Scholar 

  3. Noda, N., Nakai, S., Tsuji, T.: Thermal stresses in functionally graded material of particle-reinforced composite. JSME Int. J. Ser. A 41(2), 178–184 (1998)

    Article  Google Scholar 

  4. Ru, C.Q.: A new method for an inhomogeneity with stepwise graded interphase under thermomechanical loadings. J. Elast. 56(2), 107–127 (1999)

    Article  MATH  Google Scholar 

  5. Ding, K., Weng, G.J.: The influence of moduli slope of a linearly graded matrix on the bulk moduli of some particle- and fiber-reinforced composites. J. Elast. 53(1), 1–22 (1999)

    Article  MATH  Google Scholar 

  6. Li, J.Y.: Thermoelastic behavior of composites with functionally graded interphase: a multi-inclusion model. Int. J. Solids Struct. 37(39), 5579–5597 (2000)

    Article  MATH  Google Scholar 

  7. You, L.H., You, X.Y.: A unified numerical approach for thermal analysis of transversely isotropic fiber-reinforced composites containing inhomogeneous interphase. Compos. Part A 36(6), 728–738 (2005)

    Article  Google Scholar 

  8. Zhang, X.C., Xu, B.S., Wang, H.D., Jiang, Y., Wu, Y.X.: Prediction of three-dimensional residual stresses in the multilayer coating-based systems with cylindrical geometry. Compos. Sci. Technol. 66(13), 2249–2256 (2006)

    Article  Google Scholar 

  9. Hatami-Marbini, H., Shodja, H.M.: Thermoelastic fields of a functionally graded coated inhomogeneity with sliding/perfect interfaces. ASME J. Appl. Mech. 74(3), 389–398 (2007)

    Article  MATH  Google Scholar 

  10. Hatami-Marbini, H., Shodja, H.M.: On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces. Int. J. Solids Struct. 45(22–23), 5831–5843 (2008)

    Article  MATH  Google Scholar 

  11. Wang, X., Pan, E., Roy, A.K.: A functionally graded plane with a circular inclusion under uniform antiplane eigenstrain. ASME J. Appl. Mech. 75(1), 014501 (2008)

    Article  Google Scholar 

  12. Abbasion, S., Rafsanjani, A., Irani, N., Farshidianfar, A.: Stress analysis for a coated fiber embedded in an infinite matrix subjected to body force. Eur. J. Mech. A Solid 28(4), 777–785 (2009)

    Article  MATH  Google Scholar 

  13. Artioli, E., Bisegna, P.: Effective longitudinal shear moduli of periodic fibre-reinforced composites with functionally-graded fibre coatings. Int. J. Solids Struct. 50(7–8), 1154–1163 (2013)

    Article  Google Scholar 

  14. Sabiston, T., Mohammadi, M., Cherkaoui, M., Lévesque, J., Inal, K.: Micromechanics for a long fibre reinforced composite model with a functionally graded interphase. Compos. Part B 84, 188–199 (2016)

    Article  Google Scholar 

  15. Qiu, Y.P., Weng, G.J.: The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite. Int. J. Solids Struct. 27(12), 1537–1550 (1991)

    Article  MATH  Google Scholar 

  16. Wang, Y.M., Weng, G.J.: The influence of inclusion shape on the overall viscoelastic behavior of composites. ASME J. Appl. Mech. 59(3), 510–518 (1992)

    Article  MATH  Google Scholar 

  17. Luo, J.C., Gao, C.F.: Faber series method for plane problems of an arbitrarily shaped inclusion. Acta Mech. 208, 133–145 (2009)

    Article  MATH  Google Scholar 

  18. Pan, E.: Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes. J. Mech. Phys. Solids 52, 567–589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sudak, L.J., Wang, X.: An irregular-shaped inclusion with imperfect interface in antiplane elasticity. Acta Mech. 224, 2009–2023 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang, X.Q., Liu, H.W., Liu, J.X., Nie, G.Q.: Interface energy effect on electromechanical response of piezoelectric composites with an arbitrary nano-inclusion under anti-plane shear. Acta Mech. 226, 2323–2333 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, Y.G., Zou, W.N., Ren, H.H.: Eshelby’s problem of inclusion with arbitrary shape in an isotropic elastic half-plane. Int. J. Solids Struct. 81, 399–410 (2016)

    Article  Google Scholar 

  22. Luo, J.C., Gao, C.F.: Stress field of a coated arbitrary shape inclusion. Meccanica 46, 1055–1071 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, M.H., Chen, F.M., Hung, S.Y.: Piezoelectric study for a three-phase composite containing arbitrary inclusion. Int. J. Mech. Sci. 52, 561–571 (2010)

    Article  Google Scholar 

  24. Shen, M.H., Hung, S.Y.: Piezoelectric screw dislocation in an arbitrarily shaped three-phase composite. Eur. J. Mech. A Solid 32, 13–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, X., Schiavone, P.: Multi-coating an inclusion of arbitrary shape to achieve uniformity of interior stresses. Math. Mech. Solids 18(2), 218–227 (2012)

    Article  Google Scholar 

  26. Wang, X., Chen, W.Q.: Three-phase inclusions of arbitrary shape with internal uniform hydrostatic thermal stresses. Z. Angew. Math. Phys. 64, 1399–1411 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Muskhelishvili, N.I.: Some Basic Problem of Mathematical Theory of Elasticity. Noordhoff, Groningen (1975)

    MATH  Google Scholar 

  28. Savin, G.N.: Stress Concentration Around Holes. Pergamon Press, London (1961)

    MATH  Google Scholar 

  29. England, A.H.: Complex Variable Methods in Elasticity. Wiley-Interscience, London (1971)

    MATH  Google Scholar 

  30. Sharma, D.S.: Stresses around hypotrochoidal hole in infinite isotropic plate. Int. J. Mech. Sci. 105, 32–40 (2016)

    Article  Google Scholar 

  31. Goyat, V., Verma, S., Garg, R.K.: Reduction of stress concentration for a rounded rectangular hole by using a functionally graded material layer. Acta Mech. 228, 3695–3707 (2017)

    Article  MathSciNet  Google Scholar 

  32. Ashrafi, H., Asemi, K., Shariyat, M.: A three-dimensional boundary element stress and bending analysis of transversely/longitudinally graded plates with circular cutouts under biaxial loading. Eur. J. Mech. A Solid 42, 344–357 (2013)

    Article  MathSciNet  Google Scholar 

  33. Curtiss, J.H.: Faber polynomials and the Faber series. Am. Math. Mon. 78(6), 577–596 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanquan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zhu, W., Li, Y. et al. Stress field of a functionally graded coated inclusion of arbitrary shape. Acta Mech 229, 1687–1701 (2018). https://doi.org/10.1007/s00707-017-2052-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2052-8

Navigation