Advertisement

Acta Mechanica

, Volume 229, Issue 4, pp 1849–1868 | Cite as

On the role of control windows in continuum dynamics

  • Giovanni Romano
  • Raffaele Barretta
  • Marina Diaco
Original Paper

Abstract

The general role of control windows is investigated by an assessment of the fundamentals of continuum dynamics in the spacetime context. The momentum rate of change of a continuous body is evaluated with reference to a control window travelling in the spacetime trajectory manifold. The resulting formula involves the rate of change of the momentum in the control window and the rate of outflow of the momentum across the control window boundary. An effective tool for investigating challenging dynamical problems is thus available, and some interesting examples, taken from early and recent contributions, are illustrated. Among these, motions of chains falling under the action of gravity, object of several investigations in the past two centuries, are revisited. Around the middle of the nineteenth century, the problem was inserted as a daring task in the Mathematical Tripos at Cambridge. The choice of a special control window, named the skeleton, in motion with the solid case, provides the proper methodology for the formulation of solid–fluid interaction problems, with applications to turbines, jets, rockets and sprinklers. As a further significant application of travelling control windows, a variational formulation of conservation of mass is developed and shown to yield the notion of mass flow vector field, with applications in problems of fluid flow through a porous solid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cayley, A.: On a class of dynamical problems. Proc. R. Soc. Lond. VIII, 506–511 (1857)Google Scholar
  2. 2.
    Irschik, H.: The Cayley variational principle for continuous-impact problems: a continuum mechanics bases version in the presence of a singular surface. J. Theor. Appl. Mech. 50(3), 717–727 (2012)Google Scholar
  3. 3.
    Tait, P.G., Steele, W.J.: A Treatise on Dynamics of a Particle, 4th edn, pp. 250–251. MacMillan & Co, London (1856)Google Scholar
  4. 4.
    Hamel, G.: Theoretische Mechanik. Grundlehren der Mathematischen Wissenschaften. Bd LVII. Springer, Berlin (1949)Google Scholar
  5. 5.
    Gantmacher, F.R.: Lectures in Analytical Mechanics. Mir publishers, Moscow (1970)Google Scholar
  6. 6.
    Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970)zbMATHGoogle Scholar
  7. 7.
    Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Mathematical Concepts in Science and Engineering, vol. 4, 3rd print. Plenum Press, New York (1991)Google Scholar
  8. 8.
    Huang, Z.: The equilibrium equations and constitutive equations of the growing deformable body in the framework of continuum theory. Int. J. Non-Linear Mech. 39, 951–962 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    de Sousa, C.A., Gordo P.M., Costa P.: Falling chains as variable mass systems: theoretical model and experimental analysis. arXiv:1110.6035 [pdf] (2011)
  10. 10.
    Gardi, E.: Lecture 6: Momentum and variable-mass problems. The University of Edinburgh, School of Physics and Astronomy. http://www2.ph.ed.ac.uk/~egardi/MfP3-Dynamics/Dynamics_lecture_6.pdf (2014)
  11. 11.
    Irschik, H., Holl, H.J.: Mechanics of variable-mass systems-part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57(2), 145–160 (2004)CrossRefGoogle Scholar
  12. 12.
    Irschik, H., Belyaev, A.K.: Dynamics of Mechanical Systems with Variable Mass. CISM Courses and Lectures, vol. 557. Springer, Wien (2014)Google Scholar
  13. 13.
    Irschik, H., Casetta, L., Pesce, C.P.: A generalization of Noether’s theorem for a non-material volume. Z. Angew. Math. Mech. 96(6), 696–706 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Romano, G., Barretta, R., Diaco, M.: Solid–fluid interaction: a continuum mechanics assessment. Acta Mech. 2283, 851–869 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    von Buquoy, G.: Analytische Bestimmung des Gesetzes der virtuellen Geschwindigkeiten in mechanischer und statischer Hinsicht. Leipzig: bei Breitkopf und Härtel (1812).  https://doi.org/10.3931/e-rara-14843
  16. 16.
    von Buquoy, G.: Exposition d’un nouveau principe général de dynamique, dont le principe des vitesses virtuelles n’est qu’un cas particulier. Courcier, Paris (1815)Google Scholar
  17. 17.
    Meshchersky, I.V.: The dynamics of a point of variable mass. Dissertation, St Petersburg Mathematical Society (1897)Google Scholar
  18. 18.
    Meshcherky, I.V.: Works on the Mechanics of Bodies with Variable Mass [in Russian], with an Introduction by A.A. Kosmodemyansky, Moscow, Leningrad: G.I.T.T.L. (1949)Google Scholar
  19. 19.
    Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic, San Diego (1981)zbMATHGoogle Scholar
  20. 20.
    Sommerfeld, A.: Mechanics—Lectures on Theoretical Physics, vol. I. Academic, New York (1952)zbMATHGoogle Scholar
  21. 21.
    Routh, E.J.: A Treatise on Dynamics of a Particle. Cambridge University Press, Cambridge (1898)zbMATHGoogle Scholar
  22. 22.
    Wong, C.W., Youn, S.H., Yasui, K.: The falling chain of Hopkins, Tait, Steele and Cayley. Eur. J. Phys. 28, 385–400 (2007)CrossRefGoogle Scholar
  23. 23.
    Galilei, G.: Discorsi e Dimostrazioni Matematiche intorno a due nuove Scienze Attenenti alla Mecanica e & i Movimenti Locali, del signor Galileo Galilei Linceo, Filosofo e Matematico primario del Sereniffimo Gran Duca di Tofcana. Con una Appendice del centro di gravità d’alcuni solidi. Leida, Appreffo gli Elfevirii m.d.c.xxxviii (1638)Google Scholar
  24. 24.
    Schagerl, M., Steindl, A., Steiner, W., Troger, H.: On the paradox of the free falling folded chain. Acta Mech. 125, 155–168 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Steiner, W., Troger, H.: On the equations of motion of the folded inextensible string. Z. Angew. Mech. Phys. 46, 960–970 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gantmakher, F.R., Levin, L.M.: The Flight of Uncontrolled Rockets. Pergamon Press, Oxford (1964)Google Scholar
  27. 27.
    Ziegler, F.: Mechanics of Solids and Fluids. Springer, Berlin (1995). Transl. from Technische Mechanik der festen und flüssigen Körper. Springer, Berlin (1985)Google Scholar
  28. 28.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  29. 29.
    Romano, G., Diaco, M., Barretta, R.: Variational formulation of the first principle of continuum thermodynamics. Contin. Mech. Thermodyn. 22(3), 177–187 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Romano, G.: Continuum Mechanics on Manifolds. Lecture Notes (2007–2017). University of Naples Federico II, Italy. http://wpage.unina.it/romano
  31. 31.
    Gaudiello, A., Guibé, O., Murat, F.: Homogenization of the brush problem with a source term in L1. Arch. Ration. Mech. Anal. 225, 1–64 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifolds, Tensor Analysis, and Applications. Springer, New York (2002)zbMATHGoogle Scholar
  33. 33.
    Dieudonné, J.: Treatise on Analysis. vol. I–IV, Academic Press, New York (1969–1974)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Giovanni Romano
    • 1
  • Raffaele Barretta
    • 1
  • Marina Diaco
    • 1
  1. 1.Department of Structures for Engineering and ArchitectureUniversity of Naples Federico IINaplesItaly

Personalised recommendations